

JAWD Series AC Servo Driver user manual

Address:Building B, Jiayu Science Park, Jin'an Road, Matian Street, Guangming District, Shenzhen China. Tel: 0755-26509689 400 189 0098 Fax: 0755-26509289 E- mail:info@jmc-motion.com Http: //www.szjmc.com

Preface

All the contents of this manual, the copyright property of which belongs to Shenzhen JMC Electronics Co., Ltd., without the permission of Shenzhen JMC Electromechanics Co., Ltd., any unit or individual shall not copy, copy or copy at will. There is no guarantee, position expression or other implication of any kind in this manual. If there is any information about the products mentioned in this manual. Shenzhen JMC Electromechanics Co., Ltd. and its employees will not bear any responsibility for the direct or indirect data outflow, resulting in the loss of profits. In addition, the products and materials mentioned in this manual are for reference only, and the content is subject to update without prior notice.

All rights reserved and may not be reproduced.

Shenzhen Just Motion Control	Writer	Approved
Electromechanics Co.,Ltd.		
Version		
V1.2	R&D	R&D

Catalog

Preface	1
Chapter 1 Safety Precautions	6
1.1 Precautions for receiving and installing	6
1.2 Wiring Precautions	6
1.3 Precautions for operation and operation	7
1.4 Precautions for maintenance and inspection	7
Chapter 2 Product Introduction	9
2.1 Servo Driver	9
2.1.1 overview	9
2.1.2 Main feature	9
2.1.3 Driver Specifications	10
2.1.4 Servo drive nameplate and model description	13
2.2 Servo motor	14
2.2.1 overview	14
2.2.2 main feature	14
2.2.3 Servo motor nameplate and model description	14
2.3.1 Servo control system wiring diagram	16
2.3.2 Main power circuit connection	17
Chapter 3 Port Description and Wiring	18
3.1 Port distribution of the servo driver	18
3.2 Description of servo driver CN1 control port	19
3.2.1 CN1 Control port definition	19
3.2.2 CN1 Control Port Connection Instructions	21
3.2.3 Brake Control Connection Diagram	23
3.3 Driver CN2 encoder port description	23

3.4 Driver CN3/CN4 port description	24
3.5 Driver CN5 port description	24
3.6 Power supply and motor power cable port description	25
Chapter 4 Installation Instructions	26
4.1 Installation Dimension	26
4.2 Installation environment	27
Chapter 5 Panel Display and Settings	29
5.1 Function introduction of the panel	29
5.2 Switching process of operation mode	30
5.3 Status Display	31
5.4 Parameter setting and save method	32
Chapter 6 Control Mode and Setting	33
6.1 Position Control	33
6.1.1 Position Control Wiring Diagram	33
6.1.3 Description of position control mode parameters	35
6.1.4 Example of electronic gear ratio calculation	36
6.2 Speed control	39
6.2.1 Speed control wiring diagram	39
6.2.2 Description of speed control mode parameters	40
6.3 Torque Control	41
6.3.1 Torque control wiring diagram	41
6.3.2 Description of torque control mode parameters	42
Chapter 7 Trial Operation and Parameter Adjustment	43
7.1 Running test	43
7.1.1 Pre-run testing	43
7.1.2 No-load trial run test	44
7.2 Parameter adjustment	46
7.3 Manual Gain Adjustment	48

7.3.1 Basic parameters	48
7.3.2 gain switching	51
7.3.3 feedforward function	52
7.3.5 Suppression of Machine Resonance	53
Chapter 8 Parameter & Function	58
8.1 Parameter list	58
8.2 Parameter Description	
8.2.1 P00-xx Motor and drive parameters	71
8.2.2 Main control parameter	75
8.2.3 P02-xx Gain parameter	80
8.2.4 P03-xx Position parameter	87
8.2.5 P04-xx Speed parameter	91
8.2.6 P05-xx Torque parameter	93
8.2.7 P06-xx I/O parameter	
8.2.8 P08-xx Advanced Feature Parameters	99
8.3 List of monitoring items	104
8.4 Auxiliary function	107
Chapter 9 Fault Analysis and Treatment	111
9.1 Fault alarm information table	111
9.2 Fault alarm causes and solutions	113
Chapter 10 Communication	125
10.1 Modbus communication parameter setting	125
10.2 Modbus communication supports reading and writing	
parameter settings	126
10.3 Overview of Modbus communication protocol	128
10.3.1 introduction	128
10.3.2 communication packet	128
10.3.3 Slave address and send request	128

10.4 function number 129	9
10.4.1 Function number 03: read holding register 129	9
10.4.2 Function No. 06: Adjust a single register	0
10.4.3 Function number 10: Adjust register	1
10.4.4 Data start address	1
10.5 dead time	2
10.6 Exception procedure response	2
Chapter 11 Instructions for using special functions	4
11.1 Use method of gantry function	4
11.1.1 Functional description134	4
11.1.2 Gantry function realization connection diagram 13:	5
11.1.3 Servo basic settings and instructions	5
11.1.4 Synchronization setting open method and steps13'	7
11.2 Absolute encoder use13	8
11.2.1 Functional description13	8
11.2.2 Basic setting and description of servo based on	
MODBUS communication	8
11.2.3 Absolute data address based on MODBUS	
communication139	9
11.2.4 Absolute encoder related alarm processing	9
11.2.5 Absolute Encoder Battery Replacement	0

Chapter 1 Safety Precautions

In order to prevent harm to personal and property safety, please be sure to observe the following

precautions, and the following marks are specially marked for distinction:

Danger	Indicates a high risk of death or serious injury
Notice	Indicates that there is a high possibility of minor injury or property damage
\oslash	Indicates prohibited items

1.1 Precautions for receiving and installing

- Danger: 1、 Please use it with the driver and motor according to the specified method, otherwise it will cause equipment damage or fire.
 - 2 It is forbidden to use it in places with severe water vapor, flammable gas, corrosive gas, etc., otherwise it will cause electric shock, fire, equipment damage, etc.

1.2 Wiring Precautions

Danger: 1, Do not connect the driver power supply to the U, V, W motor output terminals, otherwise the driver will be damaged, which may cause personal injury or fire.

2. Please confirm that the connecting wires of the power supply and motor output terminals are locked tightly, otherwise sparks may be caused and fire may result.

3. Please choose the power cord and motor power extension cord correctly to avoid fire caused by insufficient current capacity of the wire.

4. Please confirm that the driver shell and the motor are grounded. Poor grounding may cause electric shock.

Notice : 1. Please do not bind the motor power line and signal line together or pass through the same pipeline to prevent interference to the signal.

2. Please use multi-strand twisted and shielded wires for signal wires and encoder feedback extension wires to enhance anti-interference ability.

- 3. After the driver is powered off, there is still high voltage inside, please do not touch the power terminal within 5 minutes, and confirm that the discharge indicator light is off before operating.
- 4. Before powering on, please confirm whether the wiring is connected correctly.

1.3 Precautions for operation and operation

Danger : 1. Before installing the equipment, please run it without load to avoid accidents.

2. Do not allow untrained personnel to operate to prevent equipment damage and personnel injury caused by misoperation.

 During normal operation, please do not touch the radiator and its interior of the driver with your hands to prevent high temperature burns or electric shock.

- Notice: 1. Please adjust the driver parameters first, and then test for a long time to prevent bad use of the driver and equipment.
 - 2. Please confirm that the switches such as equipment startup, emergency stop, and shutdown are valid before operating the equipment.
 - 3. Please do not switch the power on and off frequently.

1.4 Precautions for maintenance and inspection

1. During operation, it is forbidden to touch the inside of the driver and motor to prevent electric shock.

2. Within 5 minutes after the power is turned off, do not touch the power supply and power terminals to prevent electric shock.

3.Do not change the connecting wire while the power is on, in case of electric shock or personal injury

- 4. It must be operated and maintained by trained professionals.
- 5. Do not disassemble and repair except for our company personnel.

Chapter 2 Product Introduction

2.1 Servo Driver

2.1.1 overview

JAWD series general-purpose servo driver is a high-performance AC servo unit developed by JMC. This series of servo driver adopts advanced MCU chip for motor control, large-scale programmable gate array (FPGA) and IPM power module. It has small size, high integration, stable performance and reliable protection. It has abundant digital and analog I/O interfaces, can be used with various host computer devices, and supports MODBUS communication protocol to facilitate networking. Through the optimized PID control algorithm, the full digital control of position, speed and torque accuracy is realized, which has the advantages of high precision and fast response. Supports 17-bit and 23-bit high-precision absolute encoder motors to meet different requirements for customer performance. Widely used in automation fields such as CNC machine tools, printing and packaging machinery, textile machinery, robots, and automated production lines.

2.1.2 Main feature

- 1. Using MCU+FPGA dual-chip platform and optimized current loop design, the driver has the characteristics of high dynamic response, extremely short settling time, stable operation, and small vibration when stopped.
- Equipped with an automatic gain adjustment module, users can choose the rigidity level according to their needs.
- Built-in FIR filter and multiple sets of notch filters can automatically identify and suppress mechanical vibration.
- 4. The built-in disturbance torque observer makes the drive have a strong ability to resist external disturbances.
- There are multiple control modes for selection, position control, speed control, torque control, and various control modes can be switched.
- The position pulse input frequency is up to 1MHz, and supports multiple position command methods such as pulse + direction, orthogonal pulse, and double pulse.
- It has RS485 interface, supports MODBUS communication, cooperates with multi-turn absolute value encoder with memory function, and can be flexibly applied to industries such as manipulators.

- 8. There are programmable 6-way INPUT and 4-way OUTPUT ports, users can customize the input and output through parameter settings, and the application is flexible.
- 9. Support 17-bit and 23-bit high-precision absolute encoders.
- 10. It has perfect protection functions such as overvoltage, undervoltage, overspeed, overload, excessive position deviation, encoder error, etc., and can memorize 8 groups of historical fault information.
- 11. It has a wealth of monitoring items, and the user can choose the desired monitoring items to monitor the operating status during use.
- 12. The driver can communicate with the PC through the MINIUSB interface to realize simple and fast debugging of the servo drive system.

2.1.3 Driver Specifications

1、 Electrical Specifications

Three-phase 220V grade servo driver

2、Basic Specifications

Model : JAWD***2	750	1500	2000
Three-phase continuous	7	16	16
input current (Arms)			
Continuous output current	5.5	10	10
per axis (Arms)			
Maximum output current	16.9	28	28
per axis (Arms)			
Main current supply	Three-phase AC180-240V, 50/60Hz		
Control current supply	Single phase AC180-240V, 50/60Hz		
Regen handling function	Built-in regen resistor		
Project	Describe		
Control method		Single-phase/three-phase full-wave rectification	
		IGBT PWM Control Sine wave current drive method	
Feedback Absolute encoder			

10

	Temperature	work: $0 \sim 55^{\circ}$ C storage: $-25 \sim 85^{\circ}$ C	
	humidity Temperature	work: 10%~90%	
	Altitude	<1000m when it is higher than 1000m it should be	
	- Intude	derated according to GB/T 3859 2-93	
Conditions of use		Protoction aloggi ID10, alognlinggi 2	
	protection level	Protection class: IP10, cleaniness: 2	
		No corrosive gas, fiammable gas	
		No oil, water splash	
		Environment with less dust, salt and metal powder	
	Speed adjustment	1:6000	
	range		
		$\pm0.01\%$: External load changes 0 to 100%	
	Steady Speed	$\pm 0.01\%$: power input variation $\pm 10\%$ (220V)	
performance	Accuracy	$\pm 0.1\%$: Ambient temperature $\pm 25^{\circ}$ C (25° C)	
	Speed response	2000Hz	
	frequency		
	Torque Control	±2%	
	Accuracy		
	Encoder frequency	A phase, B phase, C phase: linear drive output	
	division pulse output	Frequency division pulse number: can be set arbitrarily	
		Points: 6	
		Functions: Servo ON, alarm clear, forward overtravel	
		signal input, reverse overtravel signal input, control	
Input and output signals		mode switching, P action command input, forward side	
	Input signals	external torque limit, reverse side external torque limit,	
		gain switching input, zero fixed input, command pulse	
		prohibition input, encoder absolute value data request	
		input, internal setting speed switching input 1, internal	
		setting speed switching input 2, internal setting speed	

		switching input 3, position command clear input,
		magnetic pole Detection input, command pulse input
		multiplier switching input
		Points: 4
		Functions: alarm output, brake release output, servo
		ready output, positioning complete output, positioning
	output signal	approach output, speed consistent output, motor zero
		speed output, torque limit detection output, speed limit
		detection output, warning output, command pulse Input
		magnification switching output.
display function		High-voltage power indicator light, 6-digit 8-segment
		LED
	RS485	Support MODBUS protocol. Axis address: set by
communication function		parameter
	MINIUSB	Connect to PC for debugging
Regen function		Built-in regen resistor or external regen resistor
Protective function		overvoltage, undervoltage, overcurrent, overload, etc.

2.1.4 Servo drive nameplate and model description

1. Description of nameplate content

2、Model Description:

JAWD T	750		
JMC	Power		
JAWD	symbol	output power	
series AC servo	750	750W	
	1500	1500W	
	2000	2000W	

Power supply		
symbol specification		
2	220VAC	

2.2 Servo motor

2.2.1 overview

JASM series servo motors are high-speed, high-precision servo motors developed by JMC to meet the requirements of modern automatic control; this series of servo motors can control speed and position accuracy very accurately, and can convert voltage signals into torque and Speed to drive the control object. The rotor speed of this series of servo motors is controlled by the input signal and can respond quickly. In the automatic control system, it is used as an actuator, and has the characteristics of small electrical and mechanical time constants, high linearity, and starting voltage. The received electrical signal is converted into angular displacement or angular velocity output on the motor shaft, and the real-time feedback signal can be sent to the servo drive for adjustment to achieve high-precision control.

2.2.2 main feature

- 1. High energy magnetic force
- 2. Short time 300% overload capacity
- 3. Flange size (mm): 40, 60, 80, 110, 130, Power: 0.1-2KW optional
- 4. Low noise, low heat generation, high precision, high speed, etc.

2.2.3 Servo motor nameplate and model description

1. Description of nameplate content

2, Model Description:

2.3 Main circuit wiring of the servo control system

2.3.1 Servo control system wiring diagram

The servo driver is directly connected to the industrial power supply without isolation from power supplies such as transformers. In order to prevent cross-shock accidents in the servo system, please use a fuse or a circuit breaker for wiring on the input power supply. Since the servo drive does not have a built-in grounding protection circuit, in order to form a more secure system, please use a leakage circuit breaker for both overload and short circuit protection or a special leakage circuit breaker for supporting ground wire protection.

2.3.2 Main power circuit connection

1. Single-phase power wiring method

2. Three-phase power wiring method

Chapter 3 Port Description and Wiring

3.1 Port distribution of the servo driver

1. Power Indicator

2. Current axis indicator light The axis with the green light always on represents the current operation axis The green light flashes to indicate that the corresponding axis has an alarm 3. Axis switching button 4. Driver power input 5. Driver control power input 6. Regen resistance port When using the built-in regeneration resistor, B1/P and B2 are shorted (default). When using an external resistor, disconnect B1/P and B2 and connect the external resistor to B1/P and B3. 7. A-Axis power line port. 8. B-Axis power line port. 9. LED display Display drive current status, parameters, alarm information, etc 10. USB Debug Interface 11. Panel operation keys

- 12. 485 Communication port
- 13. Control port
- 14. Axis A encoder line port
- 15. Axis B encoder line port
- 16. Eeath port

3.2 Description of servo driver CN1 control port

3.2.1 CN1 Control port definition

Host control and drive connection interface, used for host computer control drive and drive feedback output

Definition of each pin of the terminal:

pin number	label	Definition	Standard Voltage
1	A VREF	A-axis speed analog control positive	± 10 VDC input
2	B VREF	B-axis speed analog control positive	± 10 VDC input
3	A pulse+	A-axis pulse input positive	5V Signal
4	A direction+	A-axis direction input positive	5V Signal
5	B pulse+	B-axis pulse input positive	5V Signal
6	B direction +	B-axis direction input positive	5V Signal
7	D04-	Digital output port 4 negative	DO4- low level terminal
8	DI2	digital input 2	24VGND

9	DI3	digital input 3	24VGND	
10	A OA+	A-axis encoder A-phase positive output	5V differential output	
11	A OB+	A-axis encoder B-phase positive output	5V differential output	
12	A OZ+	A-axis encoder Z-phase positive output	5V differential output	
13	B OZ+	B-axis encoder Z-phase positive output	5V differential output	
14	SEN	none	none	
15	SEN	none	none	
16	A TREF	A-axis torque analog control positive	±10 VDC input	
17	B TREF	B-axis torque analog control positive	± 10 VDC input	
18	A pulse-	A-axis pulse input negative	5V Signal	
19	A direction-	A-axis direction input negative	5V Signal	
20	B pulse-	B-axis pulse input negative	5V Signal	
21	B direction-	B-axis direction input negative	5V Signal	
22	D04+	Digital output port 4 positive	DO4+ high level terminal	
23	DI1	digital input 1	24VGND	
24	DICOM	input common	24V+	
25	DI6	Digital input 6	24VGND	
26	A OA-	A-axis encoder A-phase negative output	5V differential output	
27	A OB-	A-axis encoder B-phase negative output	5V differential output	
28	A OZ-	A-axis encoder Z-phase negative 5V differential or output		
29	B OZ-	B-axis encoder Z-phase negative output	5V differential output	
30	GND	Digital Ground/Analog Ground	Digital Ground/Analog Ground	

31	GND	Digital Ground/Analog Ground	Digital Ground/Analog Ground	
32	D01+	Digital output port 1 positive	DO1+ high level terminal	
33	D01-	Digital output port 1 negative	DO1-Low level terminal	
34	D02+	Digital output port 2 positive	DO2+ high level terminal	
35	D02-	Digital output port 2 negative	DO2-Low level terminal	
36	D03+	Digital output port 3 positive	DO3+ high level terminal	
37	D03-	Digital output port 3 negative	DO3-Low level terminal	
38	DI4	digital input 4	24VGND	
39	DI5	digital input 5	24VGND	
40	B OA+	B-axis encoder A phase positive output	5V differential output	
41	B OA-	B-axis encoder A phase negative output	5V differential output	
42	B OB+	B-axis encoder B-phase positive output	5V differential output	
43	B OB-	B-axis encoder B-phase negative output	5V differential output	
44	None	None	None	

Note:

1. For digital input (DI) and output (DO) port custom function settings, please refer to Chapter 8 Parameter

Description for setting.

3.2.2 CN1 Control Port Connection Instructions

The digital inputs DI (DI1-DI6) can be connected using switches, relays, open-collector transistor circuits. (Input I/O port function settings refer to chapter 8.2.7 P06-xx I/O parameter description)

Digital output DO (DO1-DO4) output can be connected with relays, optocouplers, etc. (the output port is equivalent to a passive, polarized switch). Power supply voltage range 5-24V. (For the function setting of the output I/O port, please refer to the description of P06-xx I/O parameters in Chapter 8.2.7)

Control relay

control optocoupler

Speed and torque control analog control input effective voltage range (-10V~10V), the command value corresponding to this voltage range can be set by the following parameters: P06-40 speed analog command input gain, P06-43 torque analog command input gain. Please read the detailed description of the parameters for the specific setting method.

Serve driver Serve driver 24VDC 24VDC 34 D02+ 22 D04+ **∏**⊼ R --Relay Relav 35 D02-7 D04-DC24V DC24V

3.2.3 Brake Control Connection Diagram

A-axis

B-axis

Note: 1. The brake function of the drive is controlled by DO2 (pin 34, 35)/D04 (pin 22, 7) in CN1 to control the relay coil, and the relay switch controls the brake coil.

2. It is recommended to use a separate power supply for the brake coil

3.3 Driver CN2 encoder port description

pin#	mark	definition	remark
1	+5V	5v power supply	
2	GND	power ground	
3	NC	No connect	
4	NC	No connect	
5	T+	encoder T+	
6	T-	encoder T-	

3.4 Driver CN3/CN4 port description

pin#	mark	Definition		
PIN1	CANH	CNAH for bus servo only		
PIN2	CANL	CNAL for bus servo only		
PIN3	CGND	CGND for bus servo only		
PIN4	reserve	reserve		
PIN5	reserve	reserve		
PIN6	GND	ground		
PIN7	485-	485-		
PIN8	485+	485+		

3.5 Driver CN5 port description

Front facing CN5 port

pin#	mark	Definition	
1	V Bus	power 5V	
2	D- Data-		
3	D+	Data+	
4	ID	Empty	
5	GND	Ground	

3.6 Power supply and motor power cable port description

mark		Definition	Description		
L1、L2、L3		Main circuit power input	Connect to single-phase/three-phase 220V AC, it is		
		terminal	recommended to use three-phase power supply for		
			2KW, single/ three-phase power supply for 750W		
	L1C、L2C Control power input		Connect to single-phase 220V AC		
	UA, VA, WA	Motor power cable	Connect motor power cable		
	UB、VB、WB	connection port			
		Regen resistor connection terminal	When using the built-in regenerative resistor,		
B1			short-circuit B1/P and B2 (for 750W and above		
	B1/P、B2、B3		drivers, there is built-in regenerative resistors)		
			When using an external resistor, disconnect B1/P,		
			B2, and connect both ends of the resistor to B1/P, B3		

Notice:

1. Please be sure to connect an electromagnetic contactor between the power supply and the main circuit power supply of the servo drive, so that the power supply can be cut off when the servo drive fails, preventing fire caused by excessive current.

2. When the feedback energy exceeds the absorption capacity of the capacitor, an E.402 overvoltage alarm will appear. At this time, an external regenerative resistor is required, and P00-30~P00-35 are set to corresponding values. See 8.2 parameter analysis for details.

Chapter 4 Installation Instructions

4.1 Installation Dimension

1500W/2000W AC servo driver (unit: mm)

Notice:

1. The normal installation direction of the servo driver must be vertical and upright, with the top facing up for heat dissipation.

2. When the driver is installed, ensure that the equipment is well ventilated. When multiple drivers are used side by side in the cabinet, the distance between them should not be less than 5CM.

3. In order to ensure the safety of use, please be sure to connect the grounding protection terminal of the driver with the equipment protection ground !

4.2 Installation environment

The installation and use environment has a direct impact on the normal operation and service life of the product, so the following conditions must be met:

1. Working environment temperature: 0~55°C; working environment humidity: below 10%~90% (no condensation).

2. Storage environment: -20°C~+85°C; storage environment humidity: below 90% (no condensation).

3. Vibration: below 0.5G.

4. Protect from rain dripping or humid environment.

5. Avoid exposure to sunlight.

6. Prevent oil mist and salt erosion.

7. Protect against corrosive liquids, gases, etc.

8. Prevent the intrusion of dust, cotton wool and metal fines.

9. Keep away from radioactive materials and combustible materials.

10. Space should be reserved around the placement of the driver in the cabinet to facilitate loading, unloading, and maintenance.

11. Pay attention to the air flow in the cabinet. If necessary, install an external fan to enhance the air flow and reduce the ambient temperature of the driver to facilitate heat dissipation; the long-term working temperature is below 55°C.

12. Try to avoid vibration sources nearby, and install shock-absorbing devices such as vibration absorbers or anti-vibration rubber pads.

13. If there is an electromagnetic interference source nearby, the power supply and control circuit of the driver are easily disturbed and cause malfunction. You can add a noise filter or take various effective anti-interference

measures to ensure the normal operation of the driver (the noise filter will increase the leakage current, it is necessary to install an isolation transformer at the input end of the drive power supply).

Chapter 5 Panel Display and Settings

5.1 Function introduction of the panel

The JAWD series AC servo panel uses six LED digital tubes to display the status; 5-digit keys to input commands, and the specific key functions are as follows:

Panel Key mark	Definition	Description		
М	M button	Function switch and exit		
	UP button	Display change, value increase function		
▼	DOWN button	Display change, value decrease function		
ENT/	ENT/LEFT button	Long press the button to confirm or save the function Short press the button for shifting to switch the high and lo bits of the data		
O Axis	Axis switching button	A-axis, B-axis interface switch button		
A () B ()	Current operating axis	The A or B axis indicator is always on to represent the current operation axis		
	indicator light	A flashing light indicates an alarm on another axis		

Remark:

Press and hold the ENT button for 3 seconds to confirm or save the function.

In the monitoring and parameter interface, press and hold \blacktriangle \checkmark to scroll quickly.

5.2 Switching process of operation mode

JAWD series AC servo has four functional modes, which are status display mode, monitoring mode, parameter setting mode, and auxiliary mode. The switching process between them is as follows:

Note: After pressing the ENT button to enter the mode setting, you can press the M button to exit the mode selection

5.3 Status Display

The display discrimination is as follows:

Bit data

Abbreviation Symbol

Status Display bit data meaning:

Display	Meaning	Display	Meaning
E.	Control circuit power on	8.8.	Main circuit power supply ready
	Speed and torque control: Speed		Rotate checkout display
	coincidence output		
	Position control: positioning		
	complete output		
	Base block display	no	Speed and torque control:
	The light is ON at servo OFF state		speed command in input
	and OFF at ON state		During position control:
			command pulse in input

Status display abbreviation meaning:

Display	Meaning
8888	Servo not ready (power supply not on)
8.8.9.	Servo ready (servo motor is not energized)
8.8.0.8.	servo enable state (servo motor energized state)
8 .8.8. E.	Indicates that the forward overtravel signal input port is valid, and the motor
	forward rotation command is invalid
B.A.B.E .	Indicates that the reverse overtravel signal input port is valid, and the motor reverse
	command is invalid

	Related operation completed correctly	
	The servo is in the enabled state and cannot be operated. The enable must be turned	
	off before it can be operated.	
86868	Invalid value entered, the servo does not perform the current operation	
EE667.8	The relevant parameters of the servo are locked, which shall be	
	unlocked before operation	
RE-SOA	Servo fault display. Please refer to chapter 9 for fault definition	

5.4 Parameter setting and save method

Chapter 6 Control Mode and Setting

6.1 Position Control

6.1.1 Position Control Wiring Diagram

6.1.2 Position control wiring diagram

Position control commands are commonly used as differential signals and open-collector signals. It is recommended to use twisted-pair shielded wire for position signal connection wire, which can improve the anti-interference ability. Generally, single-chip controller systems use this kind of position control wiring method. The maximum input pulse frequency of this type of control is 500KHz

A-axis differential signal input

B-axis differential signal input

Description of open-collector input mode at the controller end: the single-end input mode can use the internal power supply provided by the driver, or an external power supply. But do not use dual power input to avoid damaging the drive. In general, PLC controller systems often use this position control wiring method

A-axis open collector input

Note:

When using 24V signal, a 2K resistor must be connected

Pulse command input can receive differential signal input and open collector input. The maximum receiving frequency of differential signal input is 500K, and the maximum receiving frequency of open collector input is 200K.

6.1.3 Description of position control mode parameters

$1\,{\scriptstyle \sim}\,$ Motor and driver control parameters

Para code		Name	range	Default	Description
P01-01		Control mode	0-5	0	0: position mode 1: speed mode 2: torque mode 3: speed, torque 4: position, torque 5: position, torque
P03-00		Position command setting	0-3	0	0: pulse command 1: reserve 2: bus command 3: Built-in multi-segment positions (reserve)
P03-01	0	Command pulse pattern	0-3	1	0: Quadrature pulse command 1: Direction/Pulse command 2/3: double pulse command
	1	Position command receiver port selection	0-1	0	0: Current axis pulse portinput1: Another axis pulse portinput
P03-03 0		Command pulse inverse	0-1	0	command pulse inversion
P03-09		Pulses for one motor revolution	0-1073741822	10000	Set according to user needs, See 8.2
				parameter description for details	
--------	---	--------------	-------	---	
P03-40	1st Electronic Gear Molecule	1-1073741822	64	Set according to user needs, See 8.2	
P03-42	1st Electronic Gear Denominator	1-1073741822	1	parameter description for details	
P03-15	Threshold of position deviation fault	0-1073741822	90000	Set according to user needs	
P03-25	Frequency division output pulse number	1-65535	2500	Set according to user needs	

2、Gain parameter

Please refer to the parameter adjustment in Chapter 7

6.1.4 Example of electronic gear ratio calculation

1, Ball screw drive

Eg:

(1) Mechanical parameters: deceleration ratio R is 2/1, lead of the lead screw is 10mm

(2) Resolution of each turn of position ring of absolute value encoder: 8388608

(3) Required load displacement corresponding to 1 position command (command unit) : 0.001mm Then:

According to (1) and (3), the position instruction (instruction unit) value required for the screw to rotate 1 turn (table movement 10mm) :

$$\frac{10}{0.001} = 10000$$

The electronic gear ratio is :(B is the numerator, A is the denominator)

$$\frac{\mathbf{B}}{\mathbf{A}} = \frac{8388608}{10000} \times \frac{2}{1} = \frac{1048576}{625}$$

Finally, the parameter p03-40 is set to 1048576, and P03-42 is set to 625 2. Belt pulley drive

Assumptions:

(1) Mechanical parameters: deceleration ratio R: 5/1, pulley diameter: 0.2m(pulley circumference:0.628m)

(2) Resolution of each turn of position ring of absolute value encoder: 8388608

(3) Required load displacement corresponding to 1 position command (command unit) : 0.000005mm Then:

From (1) and (3), the value of the position command (command unit) required for the pulley (load) to rotate one revolution is:

$$\frac{0.628}{0.000005}$$
 = 125600

The electronic gear ratio is : (B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{8388608}{125600} \times \frac{5}{1} = \frac{262144}{785}$$

Finally, P03-40 is set to 262144 and P03-42 is set to 785 3, Rotating load

Assumptions:

(1) Mechanical parameters: the deceleration ratio R is 10/1, and the rotation Angle of the load axis for one turn is 360°

(2) Resolution of each turn of position ring of absolute value encoder: 8388608

(3)Load displacement corresponding to 1 position instruction (instruction unit) : 0.01 $^\circ$ Then:

It can be obtained that the value of the position command (command unit) required for the load to rotate one revolution:

$$\frac{360}{0.01} = 36000$$

The electronic gear ratio is :(B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{8388608}{36000} \times \frac{10}{1} = \frac{524288}{225}$$

Finally, the parameter PO3-40 is set to 524288 and PO3-42 is set to 225

6.2 Speed control

6.2.1 Speed control wiring diagram

6.2.2 Description of speed control mode parameters

1. Motor and driver control parameters

Para code	Name	Range	Default	Description
P01-01	Control mode	0-5	1	0: position mode 1: speed mode 2: torque mode 3: speed, torque 4: position, speed 5: position, torque
P04-00	Speed command source	0-3	0	0: External analog command 1: Set value of P04-02 2: BUS command 3: Built-in multi-speed
P04-02	Speed command digital setting value	-6000-6000	0	When P04-00 is set to 1, P04-02 is the speed setting value
P04-06	Forward speed limit	0-6300	6000	Limits forward speed
P04-07	Reverse speed limit	-6300-0	-6000	Limits reverse speed
P06-40	The analog 1V corresponds to the speed value	10-2000	300	Set according to user needs See 8.2 parameter description for details

2、Gain parameter

Please refer to the parameter adjustment in Chapter 7 for adjustment

6.3 Torque Control

6.3.1 Torque control wiring diagram

6.3.2 Description of torque control mode parameters

1. Motor and driver control parameters

Para code	Name	Range	Defaul t	Description
P01-01	Control Mode	0-5	2	0: position mode 1: speed mode 2: torque mode 3: speed, torque 4: position, speed 5: position, torque
P05-00	Torque command selection setting	0-3	0	0: Analog command 1: Setting value of P05-03 2: Bus command 3: Built-in multi-stage torque
P05-01	Torque control speed limit source setting	0-3	0	0: Speed analog command 1: Setting value of P05-02 2: Bus command 3: Built-in multi-speed
P05-02	Torque control speed limit value	0-6000	1000	Set the maximum speed of the motor in torque mode. Valid when P05-01 is 1
P05-10	Positive internal torque limit	0-300	200	Limits positive torque value
P05-11	Negative internal torque limit	-300-0	-200	Limits reverse torque value
P06-43	The analog 1V corresponds to the torque value	0-100	10	Set according to user needs See 8.2 parameter description for details

2、Torque control command related gain parameters

Please refer to the parameter adjustment in Chapter 7 for adjustment

Chapter 7 Trial Operation and Parameter Adjustment

7.1 Running test

7.1.1 Pre-run testing

In order to avoid damage to the servo driver or mechanism, please remove all loads of the servo motor before operation, and carefully check whether the following precautions are normal, and then power on for a no-load test; after the no-load test is normal, the servo motor load can be connected for the next test.

Precautions:

Detection	1,	Check whether the servo drive has obvious appearance damage
before	2、	Please insulate the connecting part of the wiring terminal
power-on	3、	Check whether there are foreign objects inside the driver
	4、	Servo drives, motors and external regenerative resistors cannot be placed on combustible
		objects
	5、	In order to avoid the failure of the electromagnetic brake, please check whether the
		immediate stop and cut off power circuit can work normally
	6,	Confirm whether the external power supply voltage of the servo drive meets the
		requirements
	7、	Confirm whether the motor U, V, W power lines, encoder lines and signal lines are
		connected correctly (confirm the labels and instructions)
Detection at	1,	When the servo drive is power on, try to hear the sound of the relay action
power-up	2、	Whether the power indicator light and LED display of the servo driver are normal
	3、	Confirm whether the parameter settings are correct, and there may be unpredictable
		actions depending on the mechanical characteristics
		Do not adjust parameters to extremes
	4、	Is the servo motor self-locking
	5、	If the servo motor vibrates and sounds too loud during operation, please contact the
		manufacturer

7.1.2 No-load trial run test

1. Jog mode no-load trial run test, the user does not need to connect additional wiring, for the sake of safety, before Jog no-load speed test, please fix the motor base to prevent the reaction force caused by the change of motor speed from causing danger. The following is a simple wiring diagram in Jog mode:

2. Select the Jog mode for trial operation according to the flow chart below

7.2 Parameter adjustment

According to the equipment requirements, after selecting the appropriate control mode, the servo gain parameters need to be adjusted reasonably. Make the servo drive can drive the motor quickly and accurately, maximize the mechanical performance.

The servo gain is adjusted by multiple loop parameters (position loop, speed loop, filter, etc.), which interact with each other. Therefore, the setting of gain needs to be balanced according to certain rules.

Choose according to the requirements of the equipment. After selecting the appropriate control mode, you need to adjust the servo gain parameters reasonably. This enables the servo drive to drive the motor quickly and accurately, maximizing its mechanical performance.

The process of gain adjustment can be carried out according to the following figure:

Calculate the device inertia ratio for input to P01-04 Or perform auxiiary function F19_JL measurements

Setting P01-02 to 1 or 2 According to the requirements, increase the p01-03 parameter value step , and when the operation noise occurs, reduce the parameter value of 2 levels

Setting P01-02 to 0, enter manual gain Adjustment mode

7.3 Manual Gain Adjustment

7.3.1 Basic parameters

If the automatic gain adjustment fails to achieve the expected effect, you can manually fine-tune the gain to optimize the effect.

The servo system consists of three control loops, the basic control block diagram is as follows:

Gain adjustment needs to follow the order of the inner loop first and then the outer loop. First, set the load moment of inertia ratio P01-04, then adjust the speed loop gain, and finally adjust the position loop gain.

Speed loop gain: Increase the setting value as much as possible without vibration and noise, which can improve the speed following performance and speed up the positioning time.

Speed loop integral time constant: The smaller the setting value, the faster the integral speed and the stronger the integral effect. If it is too small, vibration and noise will easily occur.

para code	ame	Range	set up	illustrate
P01-02.0	Adjustme nt mode	0-3	1	 0: Manually adjusting. 1: Standard mode. In this mode, the parameterP02-00, P02-01, P02-10, P02-11, P02-13, P02-14, P08-20, P08-21 It will be automatically set according to the rigidity level set by P01-03, manual adjustment of these parameters will not work. The following parameters are set by the user:P02-03 (speed feedforward gain), P02-04 (speed

				 feedforward smoothing constant). 2: Positioning mode. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13, P02-14, P08-20, P08-21 will be set according to the rigidity level of P01-03 Automatically set, manually adjusting these parameters will have no effect. The following parameters will be fixed values and cannot be changed: P02-03 (speed feedforward gain): 30% P02-04 (speed feed-forward smoothing constant): 50 3: Standard mode 2. In this mode, parameters P02-00, P02-01, P02-10, P02-11, and P02-13 will be automatically set according to the stiffness level set by P01-03. The following parameters are set by the user: P02-03 (speed feedforward gain), P02-14 (speed integral constant 2), P08-20 (torque command filter constant 1), P08-21 (torque
				command filter constant 2)
				4: TurnLess mode, depends on parameters P01-05, P01-06
				There are 32 built-in gain parameters, which work when
P01-03	Rigidity level	0-31	13	P01-02 is set to 1, 2, or 3. It can be called directly
101 05		0-31	15	according to the actual situation, the larger the set value, the
				stronger the rigidity.
D00 00	Position control gain 1	0-20000	800	 The larger the setting value, the higher the gain, the greater the rigidity, and the smaller the position lag, but if the value is too large, the
P02-00				 system will oscillate and overshoot. Make the value as large as possible without oscillating. Targeted gain at rest.
P02-01	2nd position loop gain	0-20000	800	 The larger the setting value, the higher the gain, the greater the rigidity, and the smaller the position lag, but if the value is too large, the system will oscillate and overshoot. Make the value as large as possible without it to the set of th
				oscillating. • Gain for exercise.

P02-03	Speed Feedforw ard Gain	0-100	30	The feedforward gain of the speed loop, the larger the parameter value, the smaller the system position tracking error and the faster the response. However, if the feed-forward gain is too large, the position loop of the system will be unstable, and overshoot and oscillation will easily occur.		
P02-04	Speed feedforw ard filter time	0-6400	50	This parameter is used to set the time constant of the speed loop feed-forward filter. The larger the value, the greater the filtering effect, but at the same time the phase lag increases.		
P02-10	Speed loop gain	1-20000	400	 The larger the setting value, the greater the gain and rigidity, and the parameter value and load condition setting. Make the value as large as possible without oscillating. Targeted gain at rest. 		
P02-11	Speed loop integral time constant	10-5120 0	2000	 The integral time constant of the speed regulator, the smaller the setting value, the faster the integral speed and the greater the stiffness, if it is too small, vibration and noise will easily occur. When the system does not oscillate, try to reduce the value of this parameter. This parameter is for steady state response. 		
P02-13	2nd speed loop gain	1-20000	400	 The larger the setting value, the greater the gain and rigidity, and the parameter value and load condition setting. Make the value as large as possible without oscillating. Gain for exercise. 		
P02-14	2nd Speed loop integral time constant	10-5120 0	2000	 The integral time constant of the speed regulator, the smaller the setting value, the faster the integral speed and the greater the stiffness, if it is too small, vibration and noise will easily occur. When the system does not oscillate, try to reduce the value of this parameter. This parameter is for steady state response. 		

7.3.2 gain switching

The gain switching function can be triggered by the internal state of the servo or the external DI port, and it is only valid in the position control and speed control modes. Using gain switching, it can play the following roles: Switch to a lower gain when the motor is stationary (servo enabled) to suppress vibration; Switch to a higher gain when the motor is running (servo enabled) to shorten the positioning time; Switch to a higher gain when the motor is running to obtain better command following performance; Depending on usage, switch between different gain settings with an external signal.

Related parameters

para	name	Range	factory	unit	effect
code	namo	nango	setting	diff 0	time
P02-30	Gain switching setting	0-9	0		Effective
102-30	Call Switching Setting	0-9	0		immediately
P02-31	1st gain switching time	0-60000	100	ms	Effective
					immediately
P02-32	2nd gain switching time 2	0-60000	800	ms	Effective
					immediately
P02-33	1st gain Switch Waiting Time	0-60000	1000	ms	Effective
					immediately
P02-34	2nd gain Switch Waiting Time	0-60000	100	ms	Effective
					immediately

7.3.3 feedforward function

Speed feedforward: During position control, the required speed control command is calculated from the position command and added to the output of the position regulator, which can reduce the position deviation and improve the response of position control.

Torque feedforward: Calculate the required torque command from the speed control command and add it to the output of the speed regulator to improve the response of the speed control.

A. Speed feed-forward operation

Under the condition that the speed feed-forward smoothing constant is set to 50 (0.5ms), gradually increase the speed feed-forward gain to meet the system requirements. But too large speed feedforward gain will cause position overshoot, which will prolong the settling time.

B. Torque feedforward operation

In the state where the torque feedforward smoothing constant is set to 50, the torque feedforward gain is gradually increased to meet the system requirements.

R	le	la	ted	parameters
---	----	----	-----	------------

para code	name	Range	factory setting	unit	effect time
P02-03	Speed Feedforward Gain	0-100	30	1%	Effective immediately
P02-04	Speed feedforward filter time	0-6400	50	0.01ms	Effective immediately
P02-19	Torque Feedforward Gain	0-200	0	1%	Effective immediately
P02-20	Torque feedforward filter time	0-6400	80	0.01ms	Effective immediately

7.3.5 Suppression of Machine Resonance

If the servo system is too rigid and responds too quickly, it may cause resonance in the mechanical system. This situation can be improved by reducing the gain of the control loop. Resonance suppression can also be performed by using low-pass filters and notch filters without reducing the gain.

1, Resonance frequency detection

The resonance frequency of the mechanical system can be observed through monitoring items d26.1.Fr and d28.2.Fr

2, Torque command low-pass filter (P08-20, P08-21)

The low-pass filter is used when the vibration frequency will shift, and it can have a better effect when used for high-frequency vibration. By setting the filter time constant, it dampens the resonance near the resonant frequency. However, the low-pass filter will cause the phase lag of the system, the bandwidth will be reduced, and the reduction of the phase margin will easily cause loop oscillation. Therefore, it can only be used in high-frequency vibration occasions.

Filter cutoff free	uency (Hz) = 1/(2*)	pi*P08-20	(ms)*().001)

para code	name	Range	factory setting	unit	ffect time
P08-20	1st segment 1st torque command filter time constant	0-2500	100	0.01ms	Effective immediately
P08-21	1st segment 2nd torque command filter time constant	0-2500	100	0.01ms	Effective immediately

3、Notch filter

The notch filter is used when the system resonance frequency is fixed. A notch filter suppresses mechanical resonance by reducing the gain at a specific frequency. After the notch filter is set correctly, the vibration can be effectively suppressed, and you can try to continue to increase the servo gain. There are multiple sets of notch filters built into the servo, the first and second notch filters can be set automatically internally, or manually input parameters. Other notch filters can only be parameterized manually.

A. Adaptive notch filter mode

When using the self-tuning function, and set P08-25.0, P08-25.1 to 1, through the adaptive notch filter function module, the servo system will automatically identify the current resonance frequency and automatically configure the notch filter parameters.

B. Manually perform frequency identification and set notch filter parameters

You can use the auxiliary function of the drive to identify the vibration frequency and set the notch filter parameters at the same time. Note: This function is only to scan the maximum point of each frequency amplitude of the machine. Even if there is no mechanical resonance point in the machine itself, this function will scan out the frequency. Steps for usage:

a) Confirm whether the first notch filter and the second notch filter are allowed to be set. It can be judged by checking parameter P08-24. If both the first notch filter and the second notch filter are enabled. It is necessary to set the parameters of the first or second notch filter to the third notch filter, and set the corresponding P08-24.0/1 to 0. That means the first/second notch filter can be reset.

b) Turn off the servo enable, so that the servo is in the off enable state. Then execute the auxiliary function F21

c) After executing the F21 auxiliary function, the drive will give the motor a certain excitation to trigger mechanical resonance. The identified vibration frequency will then be displayed on the driver LED.

d) If the frequency identification is correct, long press the confirmation key, the drive will automatically set the current frequency parameters to the first/second notch filter, and set the corresponding P08-24.0/1 to 1 to start the notch filter.

Related parameters

para code	name	illustrate
P08-51	Frequency Sweep Torque Amplitude	Setting range: 1-300 Frequency Sweep Torque Amplitude

C. Use the auxiliary function to identify the resonance frequency and set the notch filter parameters during mechanical operation

You can use the auxiliary function of the drive to identify the vibration frequency and set the notch filter parameters at the same time. The difference from the function of the previous point is that in item B, when the mechanical off is enabled, the drive itself gives excitation to identify resonance. Item C is when the machine is in normal operation, resonance occurs, and the frequency is identified. Steps for usage: a) Confirm whether the first notch filter and the second notch filter are allowed to be set. It can be judged by checking parameter P08-24. If both the first notch filter and the second notch filter are enabled. It is necessary to set the parameters of the first or second notch filter to the third notch filter, and set the corresponding P08-24.0/1 to 0. That means the first/second notch filter can be reset.

b) Then execute the auxiliary function F22

After executing the F22 auxiliary function, the drive enters the frequency identification state and lasts for 10s. Run the device here, when there is a resonance point, the driver will recognize it and display it on the LED. The sensitivity of frequency recognition depends on parameters P01-11 and P01-12.

d) If the frequency identification is correct, long press the confirmation key, the drive will automatically set the current frequency parameters to the first/second notch filter, and set the corresponding P08-24.0/1 to 1 to start the notch filter.

Related parameters

para code	name	llustrate
P01-11	Vibration detection sensitivity	Setting range: 50-500
P01-12	Vibration detection level	Setting range: 0-5000 This parameter sets the vibration detection sensitivity of the adaptive notch filter. The smaller the parameter value is, the more sensitive the detection sensitivity is.

D. Manually set notch filter parameters

a) The resonance frequency of the mechanical system can be observed through monitoring items d26.1.Fr and d28.2.Fr.

b) Input the resonance frequency observed in the previous step into the notch filter parameters, and input the width level and depth level of the group of notch filters at the same time.

c) If the vibration is suppressed, the notch filter is working. You can continue to increase the gain, and repeat the previous 2 steps after new vibrations appear.

d) If the vibration cannot be eliminated for a long time, please turn off the servo enable in time.

E. Notch Filter Width Class

The width of the notch filter indicates the frequency bandwidth of the amplitude attenuation rate of -3dB relative to the center frequency of the notch filter

F. Notch filter depth rating

Strap depth level=output value/input value

When the notch depth level is 0, the input is completely rejected at the center frequency; when the depth level is 100, the input is completely passed at the center frequency.

Related parameters

para code	name	illustrate
P08-30	1st Notch filter frequency	Setting range: 300-5000, unit: Hz Center frequency of notch filter 1 When set to 5000, the notch filter is invalid
P08-31	lst Notch filter width	Setting range: 50-1000 Notch Width Class for Notch Filter 1 is the ratio of the width to the center frequency

P08-32	lst Notch filter depth	Setting range: 0-1000 Notch Depth Class for Notch Filter 1 The ratio relationship between the input and output for the center frequency of the notch filter The larger this parameter, the smaller the notch depth and the weaker the effect
--------	---------------------------	--

Related parameters

para code	name	Range	factory setting	unit	Effective time
P08-24.0	1st notch filter selection	0-1	0		Real time
P08-24.1	2nd notch filter selection	0-1	0		Real time
P08-30	1st notch filter frequency	50-5000	5000	HZ	Real time
P08-31	1st notch filter width	50-1000	70	0.01	Real time
P08-32	1st notch filter depth	0-1000	0	0.001	Real time
P08-33	2nd notch filter frequency	50-5000	5000	HZ	Real time
P08-34	2nd notch filter width	50-1000	70	0.01	Real time
P08-35	2nd notch filter depth	0-1000	0	0.001	Real time
P08-36	3rd notch filter frequency	50-5000	5000	HZ	Real time
P08-37	3rd notch filter width	50-1000	70	0.01	Real time
P08-38	3rd notch filter depth	0-1000	0	0.001	Real time

Note: The 1st and 2nd notch filters need to be enabled by P08-24 to work. The third notch filter only needs to set the frequency parameters to work.

Chapter 8 Parameter & Function

8.1 Parameter list

P00-xx Motor and drive parameters

P01-xx Main control parameter

P02-xx Gain parameters

P03-xx Position parameters

P04-xx Velocity parameters

P05-xx Torque parameters

P06-xx I/O parameters

P08-xx Advanced Function Parameters

The bit number identification (0, 1, 2, 3) represents the serial number of current parameter code value, which sorted as 3210. Blank means the entire parameter value.

Para	bit	Name	Unit	Range	Default	Effective
code						Time
P00-00		Motor number		0-2000	2000	Restart
P00-01		Motor rated speed	rpm	1-12000		Restart
P00-02		Motor rated torque	0.01Nm	1-65535		Restart
P00-03		Motor rated current	0.01A	1-65535		Restart
P00-04		Motor inertia	0.01kg	1-65535		Restart
			cm2			
P00-05		Motor pole pairs	pole-p	1-50		Restart
			airs			
P00-06		Current Motor No.		0-0		Restart
P00-07	0	Encoder (Type)		0-1	1	Restart

	1	Encoder (Disable overheat alarm)		0-1	1	Restart
	2	Encoder (Disable multi-turn alarm)		0-1	1	Restart
	3	Encoder (Disable battery alarm)		0-1	1	Restart
P00-08		Encoder zero offset		0-360	0	Restart
P00-09		Rated voltage	V	1-600		Restart
P00-10		Rated power	0.01kW	1-65535		Restart
P00-11		Max torque	0.01Nm	1-65535		Restart
P00-12		Max speed	rpm	1-12000		Restart
P00-13		Stator resistor	1mΩ	1-65535		Restart
P00-14		Stator inductance (Lq)	0.01mH	1-65535		Restart
P00-15		Stator inductance (Ld)	0.01mH	1-65535		Restart
P00-16		Line Back EMF Coefficient	0.01mV	1-65535		Restart
			/krpm			
P00-17		Electrical constant	0.01ms	1-65535		Restart
P00-18		Mechanical constant	0.01ms	1-65535		Restart
P00-19		Current gain percentage	%	10-500		Restart
P00-20		Monitor display at power-on		0-100	100	Restart
P00-23		Slave station ID		1-255	1/2	Real time
DO0 04	0	485 communication baud rate selection		0-7	2	Real time
P00-24	1	485 communication parity check mode		0-3	1	Real time
P00-26		Modbus response delay	0.1ms	0-100	1	Real time
P00-30		regen resistor setting		0-2	1	Real time
P00-31		Power of external regen resistor	1W	1-65535	40	Real time
P00-32		External regen resistor value	0.1Ω	1-65535	300	Real time
P00-33		Power of built-in regen resistor	1W	1-65535	40	Real time
P00-34		Built-in regen resistor value	0.1Ω	1-65535	400	Real time
P00-35		Regen resistor cooling coefficient	1%	1-100	20	Real time

	0	Three-phase power input selection		0-1	0	Restart
P00-39	1	RST power-on signal isolate		0-1	0	Restart
	2	Axis alarm association		0-1	0	Restart
P00-40		Temperature Compensation Settings	°C	-20-20	0	Real time
P00-41		Over Temperature Alarm Settings	°C	0-150	100	Real time
P00-42		Over Temperature Warning Setting	°C	0-150	100	Real time
P00-43		Fan Start Temperature Setting	°C	0-150	60	Real time
	0	Fan Fault Settings		0-1	0	Restart
	1	Abnormal communication with FPGA		0-1	0	Restart
DO0 44		fault setting (E.052)				
P00-44	2	Regeneration abnormal alarm (E.430)		0-1	0	Restart
	3	Soft start resistor overload fault setting		0-1	0	Restart
		(E.435)				
	0	DB overload fault setting (E.436)		0-1	0	Restart
	1	Motor out of control detection fault		0-1	0	Restart
		setting (E.421)				
P00-46	2	U-phase current feedback abnormal		0-1	0	Restart
		(E.071)				
	3	W-phase current feedback abnormal		0-1	0	Restart
		(E.072)				
	0	Power line off-line fault setting (E.305)		0-1	0	Restart
P00-47	1	FPGA Clock Abnormal Fault Settings		0-1	0	Restart
		(E.069)				
P00-50		Motor stall protection time	ms	10-60000	500	Real time
P00-51		Overload warning value	%	0-100	100	Real time
P00-52		Undervoltage alarm voltage value	V	10-500	180	Restart
P00-55		Overload reference value	%	50-200	115	Restart
P00-56		Motor overload time percentage	%	10-100	100	Restart

P00-80		Carrier Wave Settings		0-2	0	Restart
P01-00	0	Rotation direction		0-1	0	Restart
P01-01	0	Control mode		0-6	0	Restart
P01-02	0	Adjustment mode		0-4	0	Restart
P01-03		Rigidity level		0-31	13	Restart
P01-04		Inertia ratio	%	0-20000	300	Real time
	0	mute adjustment		0-1	0	Restart
P01-05	1	Self-adjusting type		0-2	0	Restart
	2	Quiescent current basic gain		0-8	8	Restart
DO1_0C	0	Self-adjusting value		0-7	4	Real time
P01-06	1	Self-adjusting load value		0-2	1	Real time
P01-10		Vibration detection selection		0-2	0	Real time
P01-11		Vibration detection sensitivity	%	50-500	100	Real time
P01-12		Vibration detection level	rpm	0-5000	50	Real time
P01-13		Residual vibration detection amplitude	0.1%	1-3000	400	Real time
	0	Stop mode when servo OFF or Gr.1		0-2	0	Restart
		error occurs				
P01-20	1	Stop mode when Gr.2 error occurs		0-2	0	Restart
	2	Stop mode when overtravel		0-4	0	Restart
	3	Stop mode when forced to stop		0-2	0	Restart
P01-21		Deceleration stop torque when	%	0-350	300	Real time
		overtravel, emergency stop and fault				
P01-22		Deceleration stop time when overtravel,	ms	0-60000	0	Real time
		emergency stop and fault				
P01-29		Brake release to command reception	ms	0-500	100	Real time
		delay				
P01-30		Static state, delay from brake OFF to	ms	0-500	100	Real time
		motor power off				

P01-31		Rotation state, speed threshold when	rpm	0-6000	100	Real time
		the brake is OFF				
P01-32		Rotation state, delay from servo OFF to	ms	0-1000	50	Real time
		brake OFF				
P01-35		Z signal width setting	0.1ms	1-1000	50	Real time
P02-00		Position loop gain	0.1/s	10-20000	400	Real time
P02-01		2nd position loop gain	0.1/s	10-20000	400	Real time
P02-03		Speed Feedforward Gain	%	0-100	30	Real time
P02-04		Speed feedforward filter time	0.01ms	-6400	50	Real time
P02-10		Speed loop gain	0.1Hz	10-20000	400	Real time
P02-11		Speed loop integral time constant	0.01ms	15-51200	2000	Real time
P02-13		2nd speed loop gain	0.1Hz	10-20000	400	Real time
P02-14		2nd Speed loop integral time constant	0.01ms	15-51200	51200	Real time
P02-19		Torque Feedforward Gain	%	-200	0	Real time
P02-20		Torque feedforward filter time	0.01ms	-6400	50	Real time
P02-21		Friction Compensation Gain	%	10-1000	100	Real time
P02-22		2nd friction compensation gain	%	10-1000	100	Real time
P02-23		Friction compensation coefficient	%	0-100	0	Real time
P02-24		Friction Compensation Frequency	0.1Hz	0-10000	0	Real time
		Compensation				
P02-25		Friction Compensation Gain	%	1-1000	100	Real time
		Compensation				
DU0-3U	0	Gain switching setting		0-1	0	Real time
102 30	1	Gain switching selection		0-9	5	Real time
P02-31		1st gain switching time	ms	0-60000	100	Real time
P02-32		2nd gain switching time 2	ms	0-60000	800	Real time
P02-33		1st gain Switch Waiting Time	ms	0-60000	1000	Real time
P02-34		2nd gain Switch Waiting Time	ms	0-60000	100	Real time

P02-40	0	Mode switch function selection		0-4	0	Real time
P02-41		Mode switch torque command threshold	1%	0-350	200	Real time
P02-42		Mode switch speed command threshold	rpm	0-6000	0	Real time
P02-43		Mode Switch acceleration threshold	lrpm/s	0-30000	0	Real time
P02-44		Mode switch position deviation	comman	0-10000	0	Real time
		threshold	d unit			
P02-50		Added value of torque command	%	-100-100	0	Real time
P02-51		Positive direction torque compensation	%	0-100	0	Real time
		value				
P02-52		Negative direction torque compensation	%	0100	0	Real time
		value				
P02-53		Viscous Friction Compensation Value	%	0-100	0	Real time
P02-57		Low Frequency Vibration Suppression		0-1	0	Real time
		Settings				
P02-58		Low vibration frequency 1	0.1Hz	10-2000	800	Real time
P02-59		Low frequency resonance setting 1	%	10-1000	100	Real time
D02-60	0	Model Control Selection		0-1	0	Real time
F02 00	1	Vibration Suppression Options		0-1	0	Real time
P02-61		Model Tracking Control Gain	0.1/s	10-20000	500	Real time
P02-62		Model Tracking Control Gain	0.1%	500-2000	1000	Real time
		Compensation				
P02-63		Model Control Bias (Forward Direction)	0.1%	0-10000	1000	Real time
P02-64		Model Control Bias (Reverse Direction)	0.1%	0-10000	1000	Real time
P02-65		Vibration suppression 1 Frequency A	0.1Hz	10-2500	500	Real time
P02-66		Vibration suppression 1 Frequency B	0.1Hz	10-2500	700	Real time
P02-67		Model Control speed Feedforward	0.1%	0-10000	1000	Real time
		Compensation				
P02-68		2nd model control gain	0.1/s	10-20000	500	Real time

P02-69		2nd model control gain compensation	0.1%	500-2000	1000	Real time
P02-70		Speed vibration suppression settings		0-0x1121	0x0010	Real time
P02-71		Speed vibration suppression frequency	0.1Hz	10-20000	1000	Real time
P02-72		2nd Speed vibration suppression	0.1Hz	10-20000	1000	Real time
		frequency				
P02-73		Speed vibration suppression gain	%	1-1000	100	Real time
		compensation				
P02-74		Speed vibration suppression attenuation	%	0-300	100	Real time
		gain				
P02-75		2nd Speed vibration suppression	%	0-300	100	Real time
		attenuation gain				
P02-76		Speed vibration suppression filter time	0.01ms	0-1000	0	Real time
		constant Compensation				
P02-77		2nd Speed vibration suppression filter	0.01ms	0-1000	0	Real time
		time constant Compensation				
P02-88		Current loop gain value	%	20-500	100	Real time
P03-00	0	Position command setting		0-4	0	Restart
	0	Command pulse pattern		0-3	1	Restart
P03-01	1	Position command receiver port		0-1	0	Restart
		selection				
DO2_02	0	Command pulse inverse		0-1	0	Restart
105 05	1	The active level of the command pulse		0-1	0	Restart
P03-04		Command pulse filter time	0.1us	0-2000	0	Real time
P03-05		Position complete output condition		0-2	0	Real time
P03-06		Position complete threshold	comman	0-65535	7	Real time
			d unit			
P03-07		Position close to threshold	comman	0-65535	60000	Real time
			d unit			

P03-09		Pulses for one motor revolution		0-10737418	10000	Restart
				23		
P03-15		Threshold of position deviation fault	comman	0-10737418	90000	Real time
			d unit	23		
P03-17		Position command moving average time	0.1ms	0-10000	0	Real time
P03-18		Position command first-order low-pass	0.1ms	0-65535	0	Real time
		filter time constant				
P03-25		Frequency division output pulse number		1-65535	2500	Restart
P03-26	0	Frequency division output pulse phase		0-1	0	Restart
		sequence inversion				
P03-30		Position deviation excessive warning	%	10-100	100	Real time
		value				
P03-31		Servo ON position deviation too large	指令单	0-10737418	90000	Real time
		alarm value	位	23		
P03-33		Servo ON position deviation too large	%	10-100	100	Real time
		warning value				
P03-34		Overshoot detection value	%	0-100	100	Real time
P03-40		1st Electronic Gear Molecule		1-10737418	64	Restart
				23		
P03-42		1st Electronic Gear Denominator		1-10737418	1	Restart
				23		
P03-44		2nd Electronic Gear Molecule		1-10737418	64	Restart
				23		
P03-46		2nd Electronic Gear Denominator		1-10737418	1	Restart
				23		
DO2. EO	0	Gantry function enable		0-n. xxx1	0	Real time
ru3-90	1	Enable OFF, clear gantry deviation		0-n. xx1x	0	Real time
P03-53		Threshold of gantry function position		0-10737418	10000	Real time

		deviation fault		23		
P03-55		Gantry function synchronous position		0-500	10	Real time
		proportional gain				
P04-00	0	Speed command selection setting		0-5	0	Restart
P04-01		JOG speed command setting value	rpm	0-6000	0	Real time
P04-02		Speed command digital setting value	rpm	-6000-6000	0	Real time
P04-04		Zero speed clamp threshold	rpm	0-6000	30	Real time
P04-05		Overspeed threshold	rpm	0-6300	6300	Real time
P04-06		Forward speed limit	rpm	0-6300	6000	Real time
P04-07		Reverse speed limit	rpm	-6300-0	-6000	Real time
P04-10		Zero speed detection value	rpm	0-2000	30	Real time
P04-11		Motor rotation detection speed value	rpm	0-2000	20	Real time
P04-12		Speed reach signal threshold	rpm	0-2000	30	Real time
P04-14		Speed command acceleration time	ms	0-10000	0	Real time
P04-15		Speed command deceleration time	ms	0-10000	0	Real time
P04-30		Internal setting speed 1	rpm	-6000-6000	0	Real time
P04-31		Internal setting speed 2	rpm	-6000-6000	0	Real time
P04-32		Internal setting speed 3	rpm	-6000-6000	0	Real time
P04-33		Internal setting speed 4	rpm	-6000-6000	0	Real time
P04-34		Internal setting speed 5	rpm	-6000-6000	0	Real time
P04-35		Internal setting speed 6	rpm	-6000-6000	0	Real time
P04-36		Internal setting speed 7	rpm		0	Real time
				-6000-6000		
P04-37		Internal setting speed 8	rpm	-6000-6000	0	Real time
P05-00	0	Torque command selection setting		0-5	0	Restart
P05-01		Torque control speed limit source		0-3	1	Real time
		setting				

P05-02		Torque control speed limit value rpm		0-6000	1000	Real time
P05-03		Torque command digital setting value %		-300-300	0	Real time
P05-05		Torque limiting source setting		0-3	0	Real time
P05-06		Torque limit detection signal output	ms	0-10000	0	Real time
		delay				
P05-10		Positive internal torque limit	%	0-350	200	Real time
P05-11		Negative internal torque limit	%	-350-0	-200	Real time
P05-12		Positive external torque limit	%	0-350	200	Real time
P05-13		Negative external torque limit	%	-350-0	-200	Real time
P05-14		Internally setting torque 1	%	-300-300	0	Real time
P05-15		Internally setting torque 2	%	-300-300	0	Real time
P05-16		Internally setting torque 3	%	-300-300	0	Real time
P05-17		Internally setting torque 4	%	-300-300	0	Real time
P06-00		1st Effective DI function assignment		0-n. FFFF	0	Restart
		after power-on				
P06-01		2nd Effective DI function assignment			0	Restart
		after power-on				
	0	Speed analog command selection			0	Restart
100-00	1	Torque analog command selection		0	Restart	
DOG 11	01	DI1 Terminal settings - Function selection			01	Restart
P00-11	2	DI1 Terminal settings - Logic selection			1	Restart
DOC 10	01	DI2 Terminal settings - Function selection			02	Restart
PU0-12	2	DI2 Terminal settings - Logic selection			2	Restart
DOC 12	01	DI3Terminal settings - Function selection			03	Restart
PU0-13	2	DI3Terminal settings - Logic selection		1	Restart	
DOC 14	01	DI4Terminal settings - Function selection			04	Restart
P06-14	2	DI4Terminal settings - Logic selection		1	Restart	

DOC 15	01	DI5 Terminal settings - Function selection	00-1E	07	Restart	
P06-15	2	DI5 Terminal settings - Logic selection		0-4	1	Restart
DOC 10	01	DI6 Terminal settings - Function selection	00-1E	08	Restart	
P06-16	2	DI6 Terminal settings - Logic selection			1	Restart
D02_01	01	DO1 Terminal settings - Function selection	n	00-13	01/00	Restart
P06-21	2	DO1 Terminal settings - Logic selection		0-1	1	Restart
D02.00	01	DO2 Terminal settings - Function selection	00-13	02/00	Restart	
P06-22	2	DO2 Terminal settings - Logic selection		0-1	1	Restart
	01	DO3 Terminal settings - Function selection	n	00-13	00/01	Restart
P06-23	2	DO3 Terminal settings - Logic selection	0-1	1	Restart	
01 DO4 Termin		DO4 Terminal settings - Function selection	al settings - Function selection		00/02	Restart
P06-24	2	DO4 Terminal settings - Logic selection		0-1	1	Restart
P06-40		The analog 1V corresponds to the	rpm	0-2000	300	Real time
		speed value				
P06-41		Al1 filter time constant	0.01ms	0-2500	10	Real time
P06-42		AI1 offset	mV		0	Real time
				-9999-9999		
P06-43		The analog 1V corresponds to the	%	0-100	10	Real time
		torque value				
P06-44		Al2Filter time constant	0.01ms	0-2500	10	Real time
P06-45		Al21 Offset	mV	-9999-9999	0	Real time
P06-46		Al1 Dead zone	mV	0-9999	0	Real time
P06-47		Al2 Dead zone	mV	0-9999	0	Real time
D00_00	0	Offline inertia identification mode		0-n. xxx1	0	Real time
FU8-UU	1	Online inertia identification mode		-n. xx1x		Real time
P08-01		Inertia Identification Initial Value of	1%	0-20000	300	Real time
		Inertia				
P08-02		Inertia identification running circles	0.1	5-1000	30	Real time

			turn			
P08-03		Inertia identification maximum speed	rpm	10-2000	800	Real time
P08-04		Inertia identification acceleration time	ms	20-800	100	Real time
P08-05		Waiting time after a inertia identification	ms	50-10000	1000	Real time
		completed				
P08-06		Program JOG mode		0-5	0	Real time
P08-07		Program JOG movement distance	0.1	1-2000	30	Real time
			turn			
P08-09		Program JOG movement speed	rpm	1-10000	500	Real time
P08-10		Program JOG acceleration &	ms	2-10000	100	Real time
		deceleration time				
P08-11		Program JOG waiting time	ms	0-10000	100	Real time
P08-12		Program JOG movement times	次	0-10000	1	Real time
D00 4 5	0	Auto adjust inertia settings		0-n. xxx1	1	Real time
P06-10	1	Auto adjust mode settings		0-n. xx3x	3	Real time
P08-16		Auto adjust maximum gain	0.1Hz	100-7000	3000	Real time
P08-17		Velocity observer gain	Hz	10-500	500	Real time
P08-18		Velocity observer coefficient	%	0-500	150	Real time
P08-20		1st segment 1st torque command filter	0.01ms	0-2500	100	Real time
		time constant				
P08-21		1st segment 2nd torque command filter	0.01ms	0-2500	100	Real time
		time constant				
P08-22		2nd segment 2nd torque command filter	Hz	100-5000	5000	Real time
		frequency				
P08-23		2nd segment 2nd torque command filter	0.01ms	50-100	50	Real time
		Q value				
P08-94	0	1st notch filter selection		0-1	1	Real time
ruð-24	1	2nd notch filter selection		0-1	1	Real time

	3	Friction compensation function selection		0-1	1	Real time
D00 05	0	Adaptive1st notch filter mode setting		0-1	1	Real time
P06-20	1	Adaptive 2nd notch filter mode setting		0-1	1	Real time
P08-30		1st notch filter frequency	Hz	50-5000	5000	Real time
P08-31		1st notch filter width	0.01	50-1000	70	Real time
P08-32		1st notch filter depth	0.001	0-1000	0	Real time
P08-33		2nd notch filter frequency	Hz	50-5000	5000	Real time
P08-34		2nd notch filter width	0.01	50-1000	70	Real time
P08-35		2nd notch filter depth	0.001	0-1000	0	Real time
P08-36		3rd notch filter frequency	Hz	50-5000	5000	Real time
P08-37		3rd notch filter width	0.01	50-1000	70	Real time
P08-38		3rd notch filter depth	0.001	0-1000	0	Real time
P08-51		Frequency sweep torque amplitude	%	1-300	15	Real time

Notes:

1: The bit number identification (0, 1, 2, 3) represents the serial number of current parameter code value, which sorted as 3210. Blank means the entire parameter value.

2: Most of factory values in the parameter table are the same, except some AB axes motors. Here we use A/B for distinguish, value before / means the factory value of A axis, and value after / means factory value of B axis.

8.2 Parameter Description

Parameter Code	Bit Number	Name	Unit	Parameter Range	Default Setting	Setting Method
P00-07	0	Encoder (Type)		0-1	1	Running & setting
	1	Encoder (Disable overheat alarm)		0-1	1	Running & setting
	2	Encoder (Disable multi-turn alarm)		0-1	1	Running & setting
	3	Encoder (Disable battery alarm)		0-1	1	Running & setting

注:如上图红框显示:代表该参数位号标识,其中0、1、2、3代表当前参数值的位号,位号排序为3210

Para		Name	Description
Code			•
			Factory set, no need to reset
P00-00		Motor number	0: P00-00 ~ P00-19 works
			2000: Absolute encoder motor, automatically identified by the drive
			(P00-01 ~ P00-19)
D 00.01		Mater rated aread	Setting range: 1-6000; Unit: rpm
P00-01		Motor rated speed	Factory set, no need to reset
D 00.02		Motor rotod torquo	Setting range: 1-65535; Unit: 0.01N.M
P00-02		Motor rated torque	Factory set, according to the motor matched
P00-03		Motor rated current	Setting range: 1-65535; Unit: 0.01A
100-03		Motor rated current	Factory set, according to the motor matched
D00.04		Motor inertia	Setting range: 1-65535; Unit: 0.01kg.cm ²
P00-04		moment	Factory set, according to the motor matched
		Matan mala maina	Setting range: 1-31; Unit: Pairs
P00-05		Motor pole pairs	Factory set, according to the motor matched
		Encoder (Type)	Setting range: 0-1
	0		0: Incremental encoder;
			1: Absolute encoder.
		Encoder (Disable	Setting range: 0-1
	1	overheat alarm)	0: Turn on overheat alarm;
P00-07			1: Turn off overheat alarm.
100-07		Encoder (Disable	Setting range: 0-1
	2	multi-turn alarm)	0: Turn on Multi-turn alarm (Multi-turn absolute encoder)
			1: Turn off Multi-turn alarm (Single-turn absolute encoder)
		Encoder (Disable	Setting range: 0-1
	3	battery alarm)	0: Turn on Battery alarm (Multi-turn absolute encoder)
			1: Turn off Battery alarm (Single-turn absolute encoder)
P00-08		Encoder zero offset	Encoder zero offset
P00-09		Rated voltage	Rated voltage
P00-10		Rated power	Rated power
P00-11		Max torque	Max torque

8.2.1 P00-xx Motor and drive parameters
	_		
P00-12		Max speed	Max speed
P00-13		Stator resistor	Stator resistor
		Stator inductance	Stator inductance (Lq)
P00-14		(Lq)	
		Stator inductance	Stator inductance (Ld)
P00-15		(Ld)	
B 00.44		Line Back EMF	Line Back EMF Coefficient
P00-16		Coefficient	
P00-17		Electrical constant	Electrical constant
P00-18		Mechanical	Mechanical constant
		constant	
P00-19		Current gain	Current gain percentage
		percentage	
P00-20		Monitor display at	Monitor display at power-on
		power-on	
P00-23		Slave station ID	Slave station ID setting
			Setting range: 0-7; Default: 2
			0:2400
			1:4800
		Modbus	2:9600
	0	Communication	3:19200
P00 24		baud rate	4:38400
1 00-24			5:57600
			6:115200
			7:256000
			Setting range: 0-3; Default: 0
	1	485 communication	0: No parity, 2 stop bits
P00-24			1: Even parity, 1 stop bit
100 21		parity check mode	2: Odd parity, 1 stop bit
			3: No parity, 1 stop bits

		Modbus response	Setting range: 0-100, unit: 01mS. Default 0
P00-26		delay	When the parameter is set to 0, it responds according to standard
			communication. When the parameter is set to a value, the Modbus
			communication response time responds according to the set time
		regen resistor	Setting range: 0-2
		setting	0: No regenerated resistor is used
P00-30			1: Use built-in regenerative resistor
			2: Use external regenerative resistance
		Power of external	The value ranges from 1 to 65535 unit: 1W
		regen resistor	
P00-31			Set the brake resistance power correctly according to the external
			brake resistance power. For example, if the value is 40, the
			resistance power is 40W
		External regen	The value ranges from 1 to 65535 unit: 0.1 ohm
P00-32		resistor value	The value ranges from 1 to 00000, unit. 0.1 onim
			Set correctly according to the value of the external brake resistance
		Power of built-in	The value ranges from 1 to 65535, unit: 1W
P00-33		regen resistor	According to the built-in brake resistance power set correctly, such
			as: set value 40, then the resistance power is 40W
P00-34		Built-in regen	The value ranges from 1 to 65535, unit: 0.1 ohm
		resistor value	Set correctly according to the built-in brake resistance value
		Regen resistor	Setting range: 1-100, unit: %
		cooling coefficient	According to the resistance heat dissipation conditions reasonable
P00 35			setting, heat dissipation conditions can be properly set large. When
F 00-33			the setting value is large, the allowable energy of resistance
			regeneration increases and it is not easy to report regeneration
			overload.
		Three-phase power	Setting range: 0-1
	0	input selection	0: Single-phase power input
			1: Three-phase power input (Alarm AL400 while phase loss)
		RST Power-on	Setting range: 0-1
P00-39	1	signal shield	0: Normal use power-on judgment signal
			1: Shield power-on signal
		Axis alarm	Setting range: 0-1
	2	association	0: 1, 2 axis alarm independent;
			1: 1, 2 axis alarm association, one axis alarms, the other stops.
P00-40		Temperature	Setting range: -20-20

Compensation Temperature Compensation Settings	
Over Temperature Setting range: 0-150	
Alarm Settings Over Temperature Alarm Settings	
P00-42 Over Temperature Setting range: 0-150	
Warning Setting Over Temperature Warning Setting	
Fan Start Setting range: 0-150	
P00-43 Temperature Fan Start Temperature Setting	
Setting	
Fan Fault Settings Setting range: 0-1	
0 0: Close fault	
1: Allow fault	
Abnormal	
communication with Setting range: 0-1	
1 0: Close fault	
1: Allow fault	
P00-44 (E.052)	
Regeneration Setting range: 0-1	
2 abnormal alarm 0: Close fault	
(E.430) 1: Allow fault	
Soft start resistor	
3 overload fault 0: Close fault	
setting (E.435)	
DB overload fault Setting range: 0-1	
setting (E.436) 0: Close fault	
Motor out of control Setting range: 0-1	
P00-46 1 detection fault 0: Close fault	
setting (E.421) 1: Allow fault	
U-phase current Setting range: 0-1	
2 feedback abnormal 0: Close fault	
(E.071) 1: Allow fault	

	3	W-phase current feedback abnormal (E.072)	Setting range: 0-1 0: Close fault 1: Allow fault
P00-47	0	Power line off-line fault setting (E.305)	Setting range: 0-1 0: Close fault 1: Allow fault
P00-47	1	FPGA Clock Abnormal Fault Settings (E.069)	Setting range: 0-1 0: Close fault 1: Allow fault
P00-50		Motor stall protection time	Motor stall protection time
P00-51		Overload warning value	Overload warning value
P00-52		Undervoltage alarm voltage value	Undervoltage alarm voltage value
P00-55		Overload reference value	Overload reference value
P00-56		Motor overload time percentage	Motor overload time percentage

8.2.2 Main control parameter

Para Code	Name	Description
	Rotation direction	Setting range: 0-1
P01-00		0: Counterclockwise is the positive direction
		1: Clockwise is the positive direction
	Control mode	Setting range: 0-5
		0: Position control mode
P01-01		1: Speed control mode
		2: Torque control mode
		3: Speed & Torque control mode. Use an external input port in CN1

		for switch, a	and set the function se	lection of the selected	DI port input
		port to 5 (C	ontrol mode switching)	. The control mode ca	n be
		switched by	controlling the logic s	tate of this port.	
			Terminal logic	Control mode	
			Effective	Speed mode	
			Ineffective	Torque mode	
		4: Position	& Speed control mode	. Use an external input	port in CN1
		for switch, a	and set the function se	lection of the selected	DI port input
		port to 5 (C	ontrol mode switching)	. The control mode ca	n be
		switched by	controlling the logic s	tate of this port.	,
			Terminal logic	Control mode	
			Effective	Position mode	
			Ineffective	Speed mode	
		5: Position	& Torque control mode	. Use an external inpu	t port in CN1
		for switch, a	and set the function se	lection of the selected	DI port input
		port to 5 (C	ontrol mode switching)	. The control mode ca	n be
		switched by	controlling the logic s	tate of this port.	1
			Terminal logic	Control mode	
			Effective	Position mode	
			Ineffective	Torque mode	
		Setting range	e: 0-4		
		0: Manually	adjust rigidity.		
		1: Standard	mode automatically adjus	sts rigidity. In this mode,	parameters
		P02-00, P02	-01, P02-10, P02-11, P02	2-13, P02-14, P08-20 wil	l be set
		automatically according to the rigidity level set by P01-03, manual			
P01-02	adjustment mode	adjustment o	of these parameters will n	ot work. The following p	parameters
		are set by the	e user:		
		P02-03 (velo	ocity feed-forward gain),	P02-04 (velocity feed-fo	rward
		smoothing c	onstant).		
		2: Positionin	g mode automatically ad	justs rigidity. In this mod	le, in this
		mode, the pa	rameters P02-00, P02-01	, P02-10, P02-11, P02-1	3, P02-14,

			P08-20 will be set automatically according to the rigidity level set by
			P01-03, manual adjustment of these parameters will not work. The
			following parameters are fixed values and cannot be changed:
			P02-03 (speed feed-forward gain): 30.0%
			P02-04 (velocity feed-forward smoothing constant): 0.50
			3: Automatically adjust rigidity 2, in this mode, parameters P02-00,
			P02-01, P02-10, P02-11, P02-13, will be automatically set according to the
			rigidity level set by P01-03.
			The following parameters are set by the user: P02-03 (speed feed-forward
			gain), P02-14 (speed integration constant 2), P08-20 (torque command
			filter constant 1), P08-21 (torque command filter constant 2)
			4: Automatic adjustment, dependent parameters P01-05, P01-06
			Setting range: 0-31
D01 02		Rigidity level	Built-in 32 kinds of gain class parameters, when P01-02 is set to 1, 2, 3. It
P01-03			can be called directly according to the actual situation, and the larger the
			setting value, the stronger the rigidity.
			Setting range: 0-20000, unit: 1%
		Inertia ratio	Set the load inertia ratio of the corresponding motor as follows:
P01-04			P01-04 = load inertia / motor moment of inertia
			This inertia ratio can be identified using the F19.J-L auto-inertia
			recognition value, and the identified value is written to the parameter
			Setting range: 0-1
	0	mute adjustment	0: Turn off mute adjustment
			1: Turn on mute adjustment
P01-05		Quiescent cument	Setting range: 0-8
	2		The smaller the value, the smaller the current gain at low loads. 0:
		basic gain	corresponds to 20%, 8 corresponds to 100%.
P01-06			Setting range: 0-7
	0	Self-adjusting value	When P01-02 is set to 4, it works, the larger the value, the stronger the
			rigidity.
P01-06	1	Self-adjusting load	Setting range: 0-2 Useful when P01-02 is set to 4
- 01 00	-		

		value	The higher the value, the greater the model load
			Setting range: 0-2 Useful when P01-02 is set to 4
			The higher the value, the greater the model load
DOI 10		Vibration detection	Setting range: 0-2
P01-10		selection	0: No vibration detection (turn off E.520 alarm)
			1: Warning after vibration detection (off A.911 warning)
			2: Alarm after vibration detection
		Vibration detection	Setting range: 50-500, unit: %
P01-11		sensitivity	Percentage based on P02-52
		Vibration detection	Setting range: 0-5000 units: rpm
P01-12		level	Vibration detection level base
		Residual vibration	Setting range: 1-3000 units: 0.1%
P01-13		detection amplitude	Based on the positioning completion threshold
		Stop mode when	Setting range: 0-2. You need to check whether the driver has DB hardware
		servo OFF or	circuitry.
	0	Gr.1 error occurs	0: Stop the motor via DB, then keep DB.
			1: Stop the motor through the DB, then disarm the DB.
			2: Do not use DB, stop freely
		Stop mode when	0: Use the setting in P120.nnnX.
P01-20		Gr.2 error occurs	1: Set the torque deceleration stop according to P01-21, and follow the
	1		setting in P01-20.nnnX after shutdown.
			2: Decelerate and stop according to P01-22 deceleration time, and follow
			the settings in P01-20.nnnX after shutdown
			0: Use the settings in P01-20.nnnX.
			1: Set the torque deceleration and stop according to P01-21, and the servo
			is locked after shutdown.
P01-20	2	Stop method when	2: Set the torque deceleration and stop according to P01-21, and enter the
	2	overtravel	free running state after the shutdown.
			3: Decelerate and stop according to P01-22 deceleration time, and the servo
			locks after shutdown.
			4: Decelerate and stop according to P01-22 deceleration time, and enter the

			free running state after shutdown
	3	Stop method when	0: Use the settings in P01-20.nnnX.1: Set the torque deceleration stop according to P01-21, and use the settings in P01-20.nnnX after shutdown.
		lored to step	2: Decelerate and stop according to P01-22 deceleration time, and use the settings in P01-20.nnnX after shutdown.
P01-21		Deceleration stop torque when overtravel, emergency stop and fault	Setting range: 0-350 units: % Set the deceleration and stop torque in case of emergency stop, failure, overtravel
P01-22		Deceleration stop time when overtravel, emergency stop and fault	Setting range: 0-60000 units: ms Emergency stops, breakdowns, deceleration downtime in case of overtravel
P01-29		Brake release to command reception delay	Setting range: 0-500 units: ms The delay time when the brake is turned on until the command is received
P01-30		Static state, delay from brake OFF to motor power off	Setting range: 0-500 units: ms When enabling is on: After executing the enable command, the driver will not receive the position command until the time has elapsed from P01-30. Off enable: When the motor is in a stationary state, after the off enable command is executed, the time between the shutdown brake closing and the motor becoming non-energized.
P01-31		Rotation state, speed threshold when the brake is OFF	Setting range: 0-6000, unit: rpm When the motor is in rotation, the motor speed threshold when the brake output is active. Below this threshold, the holding brake output command is valid, otherwise it will wait for time P01-32 before the holding brake output command is valid.
P01-32		Rotation state,	Setting range: 0-1000, unit: ms

	delay from servo OFF to brake	The maximum waiting time of the holding brake output when the enable time is turned off and the motor is in rotation.
	OFF	
P01-35	Z signal width setting	Setting range: 0-1000, unit: 0.1ms If set to 0, the default width is set When there is a value, the Z signal width is measured in set time

8.2.3 P02-xx Gain parameter

Para code	Name	Description
P02-00	Position loop gain	Setting range: 0-20000, unit: 0.1/s The proportional gain of the position ring regulator, the larger the parameter value, the higher the gain ratio, the greater the stiffness, the smaller the position tracking error, and the faster the response. However, too large parameters can easily cause vibration and overshoot. This parameter is for steady-state response.
P02-01	2nd Position loop gain	Setting range: 0-20000, unit: 0.1/s The proportional gain of the position ring regulator, the larger the parameter value, the higher the gain ratio, the greater the stiffness, the smaller the position tracking error, and the faster the response. However, too large parameters can easily cause vibration and overshoot. This parameter is for dynamic response.
P02-03	Speed feedforward gain	Setting range: 0-100, unit: 1% The feed-forward gain of the velocity loop, the larger the parameter value, the smaller the system position tracking error and the faster the response. However, excessive feedforward gain will make the position loop of the system unstable, which is easy to produce overshoot and oscillation.
P02-04	Speed feedforward filter time	Setting range: 0-64.00, unit: 0.01ms This parameter is used to set the velocity ring feed-forward filter time constant. The higher the value, the filtering effect increases, but at the same time the phase lag increases.

		Setting range: 10-20000, unit: 0.1Hz
		The greater the speed proportional gain, the greater the servo stiffness, and
		the faster the speed response, but excessive vibration and noise are easily
P02-10	Speed loop gain	generated.
		Under the condition that the system does not oscillate, increase the value
		of this parameter as much as possible.
		This parameter is for a static response.
		Setting range: 15-51200, unit: 0.01ms
		The speed regulator integrates the time constant, the smaller the setting
		value, the faster the integration speed, the greater the stiffness, too small is
P02-11	Speed loop integral	easy to generate vibration and noise.
	constant	In the absence of oscillation in the system, reduce the value of this
		parameter as much as possible.
		This parameter is for steady-state response.
		Setting range: 10-20000, unit: 0.1Hz
		The greater the speed proportional gain, the greater the servo
		stiffness, and the faster the speed response, but excessive vibration
P02-13	2nd Speed loop	and noise are easily generated.
	gain	Under the condition that the system does not oscillate, increase the
		value of this parameter as much as possible.
		This parameter is for dynamic response.
		Setting range: 15-51200, unit: 0.01ms
		The speed regulator integrates the time constant, the smaller the setting
	2nd Speed loop	value, the faster the integration speed, the greater the stiffness, too small is
P02-14	integral time	easy to generate vibration and noise.
	constant	In the absence of oscillation in the system, reduce the value of this
		parameter as much as possible.
		This parameter is for dynamic response.
		Setting range: 0-200, unit: 1%
P02-19	Torque feedforward gain	Set the current loop feed-forward weight. This parameter weights the
		differentiation of the speed command and adds the current loop.

DO2 20		Torque feedforward	Setting range: 0-6400, unit: 0.01ms
P02-20		filter time	This parameter is used to set the torque feed-forward filter time constant
			Setting range: 10-1000, unit: 0.1%
			Set parameters for responsiveness to external interference. The higher the
D 00.01		Friction	setpoint, the better the response to external interference, and if the effect is
P02-21		compensation gain	insufficient, increase the setpoint of friction compensation gain in units of
			10% without vibration, but vibration may be generated when the setpoint
			is too high when the device has a resonance frequency.
			Setting range: 10-1000, unit: 0.1%
			Set parameters for responsiveness to external interference. The higher the
D 00.00		2nd Friction	setpoint, the better the response to external interference, and if the effect is
P02-22		compensation gain	insufficient, increase the setpoint of friction compensation gain in units of
			10% without vibration, but vibration may be generated when the setpoint
			is too high when the device has a resonance frequency.
			Setting range: 0-100, unit: 1%
		Friction	Set the parameters of the friction compensation effect. The higher the
P02-23		compensation	setpoint, the better the effect, but if the setpoint is too high, the more
		coefficient	likely the response is to vibrate. Generally, set the setting value below
			95%.
		Friction	
D02.24		compensation	Setting range: 0-10000, unit: 0.1Hz
P02-24		frequency	This parameter is used for friction compensation frequency compensation
		compensation	
		Friction	
P02-25		compensation gain	Setting range: 1-1000, unit: %
		compensation	This parameter is used for friction compensation gain compensation
P02-30		Gain switching	0: No gain switching.
	0	settings	1. Automatically switch the gain according to the conditions
		Sectings	Traconacteary switch the gain according to the conditions
		Gain switching	Setting range: 0-9
	1 selection	Set the conditions for switching between the first gain (P02-00, P02-10,	
		5010011011	P02-11, P08-20) and the second gain (P02-01, P02-13, P02-14, P08-21).

			0: Position	ning completes the	output signal ON	
			1: Position	ning the output sign	nal OFF	
			2: Locate	close to the output	signal ON	
P02-30			3: Locate	close to the output	signal OFF	
			4: Position	n command filter o	utput = 0 and command pulse input OFF	
			5: Position	n command pulse i	nput ON	
			6: Gain sv	witching IO input is	sactive	
			7: Zero sp	beed status is valid		
			8: Motor i	rotation state		
			9: Speed of	consistent state		
		1st gain switching	Setting ra	nge: 0-60000 Unit:	lms	
P02-31		time	Set the time from the first set of gains to the second set of gains			
		2nd gain	Satting range: 0.60000 Unit: 1mg			
P02-32		switching time 2	Set the fir	st set of gain switch	hing time from the second set of gains	
		Ant main Orwitala	G wi		the nom the second set of gams	
		ist gain Switch	Set the first act of action multi-line multi-line when the multi-line line			
P02-33		Waiting Time	Set the first set of gain switching wait times when the switching condition			
			is reached	l		
		2nd gain Switch	Setting ra	Setting range: 0-1000.0, unit: ms		
P02-34		Waiting Time	Set the second set of gain switching wait times when the switching			
			condition	is reached		
			Setting ra	nge: 0-4		
			Set the co	nditions for speed	loop PI control and P control	
			value	Judgment	remark	
				conditions		
		Mode switch	0	Torque	When the torque command is less than	
P02-40	0	function coloction		command	P02-41, it is PI control, and if it is	
		function selection			greater, it is P control	
			1	Speed	When the speed command is less than	
				command	P02-42, it is PI control, and if it is greater	
					than it, it is P control	

		2	acceleration	When the acceleration is less than			
				P02-43, it is PI control, and if it is greater			
				than it, it is P control			
		3	position	The position deviation is less than			
			deviation	P02-45 when the threshold is set for PI			
				control, and greater than P control			
		4	Modeless	The position deviation is less than			
			switch	P02-45 when the threshold is set for PI			
				control, and greater than P control			
		Setting ra	nge: 0-350, unit: 19	%			
P02-41	Mode switch torque	When P02	2-40.0=0, when the	torque command is less than the set value			
	command threshold	driver PI	control, greater that	n P control			
		Setting ra	nge: 0-6000, unit: 1	ps			
P02-42	Mode switch speed	P02-40.0=	=1, when the speed	command is less than the setpoint driver PI			
	command threshold	control, g	reater than P contro	bl			
	Mode switch	Setting ra	nge: 0-30000, unit:	1rps/s			
P02-43	acceleration	When P02	2-40.0=2, when the	acceleration is less than the setpoint driver PI			
	threshold	control, g	reater than P contro	bl			
	Mode switch	Setting ra	nge: 0-10000, unit:	1 command unit			
P02-44	position deviation	When P02	2-40.0=3, when the	position deviation is less than the setpoint			
	threshold	driver PI	driver PI control, it is greater than P control				
		Setting ra	nge: -100-100, unit	:: 1%			
	Added value of	Valid whe	en in position contr	ol mode. This value is superimposed on the			
P02-50	torque command	given torque value and is used for static moment compensation on the					
		vertical as	xis.	-			
		Setting range: -100-100, unit: 1%					
P02-51	Positive torque	Valid whe	en in position contr	ol mode. Used to compensate for positive			
	compensation value	static frict	tion	1 X			
	Negative direction	Setting ra	nge: -100-100. unit	:: 1%			
P02-52	torque	Valid whe	en in position contr	ol mode. Used to compensate for reverse			
	compensation value	static frict	tion	· · · · · · · · · · · · · · · · ·			
	compensation value	static frict	tion				

P02-53		Viscous friction	Setting range: 0-100, unit: 1%
		compensation value	
P02-57		Low frequency vibration suppression setting	Setting range: 0-1 0: P02-58, P02-59 is invalid 1: Effective In position mode, it is used to suppress machine shaking caused by positioning.
P02-58		Low frequency vibration frequency 1	Setting range: 10-2000 units: 0.1Hz
P02-59		Low frequency resonance setting 1	Setting range: 10-1000 units: %
	0	Model Control Selection	Setting range: 0-1 0: Disable 1: Enable
P02-60	1	Vibration Suppression Options	Setting range: 0-1 0: Disable 1: Enable
P02-61		Model controls gain	Model tracking control bias (forward direction)
P02-62		Model controls gain compensation	Model Control Bias (Inverting Direction)
P02-63		Model control bias (forward direction)	Setting range: 10-1000 units: 0.1% If the forward and reverse responses are different, fine-tune them with the following parameters. If you decrease the setpoint, the responsiveness is slower, but overshoot is not likely to occur.
P02-64		Model Control Bias (reverse Direction)	Setting range: 10-10000 Units: 0.1% If the forward and reverse responses are different, fine-tune them with the following parameters. If you decrease the setpoint, the responsiveness is slower, but overshoot is not likely to occur.

P02-65		Vibration suppression 1 frequency A	Vibration suppression 1 frequency A
P02-66		Vibration suppression 1 frequency B	Vibration suppression 1 frequency B
P02-67		Model controls speed feedforward compensation	Setting range: 10-10000 Units: 0.1% Even if you adjust the model control gain, model control bias (forward direction), and model tracking control offset (reverse direction), when overshoot still occurs, you can improve this parameter by adjusting this parameter. If you decrease the setpoint, the responsiveness is slower, but overshoot is not likely to occur.
P02-68		2nd model control gain	Setting range: 10-20000 Unit: 0.1/s When P02-60.0=1, increase the second model control gain, the responsiveness becomes higher and the positioning time becomes shorter. The responsiveness of the servo system depends on this parameter
P02-69		2nd model control gain compensation	Setting range: 500-2000 Unit: 0.1% By increasing the model control gain compensation, the responsiveness becomes higher and the positioning time becomes shorter.
P02-70	0	Speed vibration suppression settings	Setting range: 0-1 0: No speed vibration suppression 1: Perform speed vibration suppression
P02-71		Speed vibration suppression frequency	Setting range: 10-20000 Unit: 0.1Hz Set the speed damping frequency
P02-72		2nd Speed vibration suppression frequency	Setting range: 10-20000 Unit: 0.1Hz Set the speed damping frequency2

P02-73	Speed vibration suppression gain compensation	Setting range: 0-1000 Units: 1%
P02-74	Speed vibration suppression attenuation gain	Setting range: 0-300 units: 1% The higher the value, the stronger the vibration suppression effect
P02-75	2nd Speed vibration suppression attenuation gain	Setting range: 0-300 units: 1% The higher the value, the stronger the vibration suppression effect
P02-76	Speed vibration suppression filter time constant Compensation	Setting range: 0-1000 Unit: 0.01ms
P02-77	2nd Speed vibration suppression filter time constant Compensation	Setting range: 0-1000 Unit: 0.01ms
P02-88	Current loop gain value	Setting range: 0-1000 Unit: 0.01ms

8.2.4 P03-xx Position parameter

para code	Name	Description
P03-00	Position command source	0: Pulse command 1: Reserved 2: Bus instructions 3: Built-in multi-segment position

			0: Quadrature pulse command (90° phase difference two-phase
P03-01		Command pulse	pulse)
	0	pattern	1: Direction + pulse command
			2 or 3: Double pulse command (CW+CCW)
			0: Pulse port input of this axis
	1	Position command	1: Another shaft pulse port input
		receiver port selection	Used to adjust the pulse command counting direction
			Used to adjust the pulse command counting direction
		Command pulse	0: Normal.
500.00	0	inverse	1: Reverse direction
P03-03			0: Rising edge count
		The active level of the	0: Rising edge count
	1	command pulse	1: Falling edge count
			Setting range: 0-2000 Unit: 0.1us
P03-04		Command pulse filter	Command pulse filter width setting, filter width = set value * 0.1
		time	(us)
		Position complete	0: The position deviation is less than the P03-06 setpoint
		output condition	1: The position deviation is less than the P03-06 set value, and the
P03-05			command after position command filtering is 0
			2: The position deviation is less than the P03-06 set value, and the
			command after the position command is 0
		Position complete	Setting range: 0-65535 Unit: Instruction unit
		threshold	Used to set the threshold value of the position-completed output
			to the command unit (refer to parameters P03-09, P03-40,
P03-06			P03-42)
			The positioning completion range is used as the basis for
			determining the position gain tuning in the one-key autotuning
			function.
		Position close to	Setting range: 0-65535 Unit: Instruction unit
P03-07		threshold	Used to set the threshold value of the position-completed output
			to the command unit (refer to parameters P03-09, P03-40,

			P03-42)
			The positioning completion range is used as the basis for
			determining the position gain tuning in the one-key autotuning
			function.
		Pulses for one motor	Setting range: 0-1073741823
D 00.00		revolution	Used to set the number of command pulses for one revolution of
P03-09			motor rotation. When this parameter is set to 0, the P03-40 and
			P03-42 parameters are valid.
		Threshold of position	Setting range: 0-1073741823 Unit: Command unit
D00.45		deviation fault	Set the number of pulses that can be deviated, and if the set value
P03-15			is exceeded, an alarm E.501 will be alarmed. Do not check out
			when set to 0
			Setting range: 0-10000 Unit: 0.1ms
P03-17		Position command moving average time	Set the time constant of the position command smoothing filter,
			the moving average filter.
		Position command	Setting range: 0-65535 Unit: 0.1ms
P03-18		first-order low-pass	Set the time constant of the position command smoothing filter, a
		filter time constant	first-order low-pass filter.
			Setting range: 0-65535
		Frequency division	Set the absolute value of the motor rotation one turn, the number
P03-25		output pulse number	of A and B frequency pulses each output.
			Example: The setting value is 2500, and for each revolution of the
			motor, the A and B signals output 2500 pulses each
		Frequency division	Used to adjust the phase sequence of the crossover output pulse
P03-26	0	output pulse phase	0: Normal.
		sequence inversion	1: Reverse direction
		Position deviation	Setting range: 0-100 units:%
P03-30		excessive warning	Excessive position deviation warning value = P03-30 set value *
		value	P03-15
		Servo ON position	Unit: Command unit Setting range: 0-1073741823
P03-31		deviation is too large	The number of pulses allowed to deviate when setting the servo

		alarm value	ON, if it exceeds the set value, it will alarm E.503, and it will not be detected when it is set to 0
P03-33		Servo ON position deviation too large warning value	Setting range: 0-100 units:% Servo ON position deviation is too large warning value = set value * P03-31
P03-34		Overshoot detection value	Setting range: 0-100 units:% Overshoot detection threshold = P03-34* P03-06. The overshoot detection value will be used as the basis for position gain tuning in the one-key autotuning function.
P03-40		1st Electronic Gear Molecule	
P03-42		1st Electronic Gear Denominator	See 6.1.3 Examples of electronic gear ratio calculations for
P03-44		2nd Electronic Gear Molecule	Note: The encoder molecule is 8388608
P03-46		2nd Electronic Gear Denominator	
	0	Gantry function enable	0: Turn off the gantry function. 1: Parameter setting enable, and input IO gantry enable at the same time to start the gantry function
P03-50	1	Enable OFF, clear gantry deviation	0: Turn off the gantry function. 1: Parameter setting enable, and input IO gantry enable at the same time to start the gantry function
P03-53		Threshold of gantry function position deviation fault	Setting range: 0-1073741823 Unit: Command unit Set the number of pulses allowed to deviate, exceed the set value will alarm E.510, set 0 when not detected
P03-55		Gantry function synchronous position proportional gain	Setting range: 0-500 Increasing the parameter value can improve the position synchronization of the two axes and help reduce the synchronization error, but it is easy to generate vibration and

	noise when the setting is too large.

8.2.5 P04-xx Speed parameter

Para code	Name	Description
	Crossed command	0: Analog instructions
P04-00	Speed command	1: Setpoint of P04-02
	selection settings	2: Bus instructions
		3: Built-in multi-segment speed
P04-01	JOG speed command	Setting range: 0-6000, unit: rpm
	set point	Set the JOG running speed
P04 02	Speed command	Setting range: -6000-6000, unit: rpm
r 04-02	digital setpoint	When P04-00 is set to 1, P04-02 is the speed setpoint
	Zero speed clamp	Setting range: 0-6000, unit: rpm
P04-04	threshold	Sets the speed command threshold that triggers the zero-speed
		position clamp function
	Overspeed threshold	Setting range: 0-6300, unit: rpm
P04-05		Set the maximum allowable speed value, exceeding the set value will
		be E.420 overspeed alarm
	Forward speed limit	Setting range: 0-6300, unit: rpm
P04-06	-	Limit the positive speed value of the motor
		Setting range: -6300-0. unit: rpm
P04-07	Reverse speed limit	Limit the motor reverse speed value
		Setting range: 0-2000 unit: rpm
P04-10	Zero-speed	Cat a gave around detection threshold helew which a "gave around
	detection value	Set a zero-speed detection threshold below which a zero-speed
		detection" signal can be output through the output port
P04-11	Motor rotation	Setting range: 0-2000, unit: rpm

	detection speed	Set the motor rotation detection threshold, above which the motor								
	value	speed car	n be displ	ayed via	an LED panel					
	Speed reach signal	Setting ra	ange: 0-2	000, unit	: rpm					
	threshold	Set the threshold value of the speed consistent signal, and when the								
P04-12		differenc	difference between the motor speed and the command speed is within							
		this three	shold, the	"speed r	eached detected"	signal can be output				
		through t	through the output port							
D04 14	Speed command	Setting ra	ange: 0-1	0000, uni	t: 1ms/1000rpm					
P04-14	acceleration time	Set the acceleration when controlling the speed								
D04 15	Speed command	Setting ra	ange: 0-1	0000, uni	t: 1ms/1000rpm					
P04-15	deceleration time	Decelerat	tion whe	n setting	the speed control					
		Setting ra	ange: -60	00—600	0, unit: rpm					
		Parameters P04-30 to P04-37 set the internal speed 1 to internal								
		speed 8, respectively								
		The internal speed switching is implemented as follows:								
		When the	t 3,							
		The corresponding input port functions are defined as 0D, 0E, 0								
		Example:	DI5, and define the I/O							
		port functions as 0D, 0E, and 0F respectively (see P06-11 parameter								
D04.20		description for function definition), and realize the speed switching								
P04-30	Internal speed	operation of the corresponding parameter setting through the								
D04.27	settings 1-8	combination of I/O levels.								
P04-37		DI3	DI4	DI5	action					
					parameter					
		0	0	0	P04-30					
		1	0	0	P04-31					
		0	1	0	P04-32					
		1	1	0	P04-33					
		0	0	1	P04-34					
		1	0	1	P04-35					
		0	1	1	P04-36					

		1	1	1	P04-37	
--	--	---	---	---	--------	--

8.2.6 P05-xx Torque parameter

Para code	Name	Description
	Torque command	0: Analog instructions
P05-00		1: The setpoint of P05-03
	selection settings	2: Bus instructions
		3: Built-in multi-stage torque
		0: Speed analog command
P05-01	Torque control speed	1: Setpoint of P05-02
105 01	limit source setting	2: Bus instructions
		3: Built-in multi-segment speed
		Setting range: 0-6000 units: rpm
	Torque control speed limit value	The maximum motor speed value when the torque mode is set to
P05-02		prevent mechanical damage caused by the motor speed being too
		high under no load
		The torque control mode is active
	Torque command digital set value	Setting range: -300-300, unit: %
P05-03		When P05-00 is set to 1, P05-03 is given a value for digital torque
		0: Built-in/external torque setting P05-10,5-11 or P05-12,05-13
		1: Torque simulation command limiting, superimposed
	Torque limiting source	P05-10,05-11 or P05-12,05-13
P05-05	i orque minting source	2: Torque simulation command limiting, which only works when
	setting	PCL and NCL are effective. Superimpose P05-10,05-11 or
		P05-12,05-13 at the same time
	Torque limit detection	Setting range: 0-10000, unit: ms
P05-06	signal output delay	Set the signal delay time in the DO port output torque limit
	Positive internal torque	Setting range: 0-350 Units: 1%
P05-10	limit	Limit the forward output of the motor, 100 means 1 times the
		torque, 300 means 3 times the torque

		When the torque output reaches the limit value, the torque limit						
		signal can b	e output through t	he DO port				
	Negative internal torque	Setting rang	ge: -350-0 Unit: 1%)				
	limit	Limit the re	verse output of the	e motor, 100 means 1 times t	he			
P05-11		torque, 300 means 3 times the torque						
		When the to	orque output reach	es the limit value, the torque	e limit			
		signal can be output through the DO port						
	Positive external torque	Setting rang	ge: 0-350 Units: 1%	,)				
	limit	To switch th	nis function, you ne	eed to use an external input p	oort in			
		CN1 to swit	ch, and set the sele	cted DI port input port funct	tion			
		selection to 7 (forward external torque limit value). Control the						
		logical state of the port to switch control modes.						
			Terminal logic	Torque limit				
205-12			effective	External limit P05-12				
			invalid	Internal limit P05-10				
		If this DI function is not assigned, the default torque limit of the						
		system is P05-10						
		When the torque output reaches the limit value, the torque limit						
		signal can be output through the DO port						
	Negative external torque	Setting rang	ge: 0-350 Units: 1%	,)				
	limit	To switch th	nis function, you ne	eed to use an external input p	port in			
		CN1 to swit	ch, and set the sele	cted DI port input port funct	tion			
		selection to	8 (reverse externa	ıl torque limit value). Contro	l the			
		logical state	of the port to swit	ch control modes.				
DOF 12			Terminal logic	Torque limit				
P05-13			effective	External limit P05-13				
			invalid	Internal limit P05-11				
		If this DI fur	nction is not assign	ed, the default torque limit o	of the			
		system is P0	05-11					
		When the to	orque output reach	es the limit value, the torque	e limit			
		signal can b	e output through t	he DO port				

		-					
		Setting rang	ge: -300—3	300, unit: %			
		Parameters P05-14 to P05-17 set the internal torque 1 to the					
		internal tor	que 4, resp	pectively			
		The interna	l speed sw	itching is implemer	nted as follows:		
		When the to	orque loop	is controlled, P05-0	00 sets 3,		
		The corresp	onding in	put port functions a	re defined as 11, 12		
		Example: U	se input si	gnal ports DI3 and I	DI4. And the I/O port		
P05-14	Internal actting tongue	functions are defined as 11 and 12 respectively (see P06-11					
~	Internal setting torque	parameter description for function definition), and the torque					
P05-17	1~ 4	switching operation of the corresponding parameter setting is					
		realized through the combination of I/O levels.					
		DI3	DI4	action			
				parameter			
		0	0	P05-14			
		1	0	P05-15			
		0	1	P04-16			
		1	1	P04-17			

8.2.7 P06-xx I/O parameter

Para code		Name	Description
P06-00		1st Effective DI function assignment after power-on	Setting range: 00-ffff Factory setting: 0 Set the 10 function to take effect at power-on
P06-01		2nd Effective DI function assignment after power-on	Setting range: 00-ffff Factory setting: 0 Set the 10 function to take effect at power-on
	0	Speed analog command selection	0: Use Ain_1 (Speed Simulation Command Interface) 1: Use Ain_2 (torque simulation command interface)
P06-05	1	Torque analog command selection	0: Use Ain_2 (torque simulation command interface) 1: Use Ain_1 (speed simulation command interface)

			Setting range: 00-1E Factory setting:
			0x00: None
			0x01: Servo enable
			0x02: Alarm clearance
			0x03: Forward overtravel
			0x04: Reverse overtravel
P06-11			0x05: Control mode switching
			0x06: P control command input
			0x07: Forward external torque limit value switching
			0x08: Reverse external torque limit value switching
			0x09: Gain switching
			0x0A: Zero lock
		DI1 Terminal - Function Selection	0x0B: Pulse command input is prohibited
	0		0x0D: Speed multi-segment selection 1
	1		0x0E: Speed multi-segment selection 2
			0x0F: Speed multi-segment selection 3
			0X10: Position residue command removal
			0X11: Torque multi-stage selection 1
			0X12: Torque multi-stage selection 2
			0x13: Gantry synchronization enable
			0x14: Gantry alignment zero signal
			0x15: Origin switch signal
P06-11			0x16: Origin regression initiation signal
			0X17: Speed simulation command negation
			0X18: Torque simulation command inverse
			0X19: External alarm signal
			0X1A: Emergency stop input signal
			0X1B: Probe 1 input signal

			0X1C: Probe 2 input signal		
			0X1D: Pole detection request signal		
			0X1E: The position command takes the negative signal		
			Note: For low-speed terminals, the active level can only be		
			confirmed if the active level exceeds 3.2ms		
			0: Active low (optocoupler off)		
		DI1 torminal logia	1: Active high level (optocoupler on)		
	2	DII terminal - logic	2: The falling edge is effective		
		selection	3: The rising edge is effective		
			4: The rising and falling edges are effective		
P06-12	0	DI2 terminal - function			
P06-12	1	selection	SeeP06-11.01		
	2	DI2 terminal - logic	See P06-11.2		
		selection			
	0	DI3 terminal - function			
P06 12	1	selection	See P06-11.01		
100-13	2 DI3 terminal - logic	DI3 terminal - logic			
		selection	See P06-11.2		
	0	DI4 terminal - function			
P06-14	1	selection	See P06-11.01		
100-14	2	DI4 terminal - logic			
		selection	See P06-11.01		
	0	DI5 terminal - function	See D0(11.01		
P06-15	1	selection	See P06-11.01		
100 10	2	DI5 Terminal - Logic	0 - P0(44.2		
		Selection	See Pub-11.2		
	0	DI6 terminal - function			
P06-16	1	selection	See Pub-11.2		
100-10	2	DI6 Terminal - Logic	C D0(11.2		
Selection		Selection	See P06-11.2		

			Setting range: 0-13, factory setting: 0x03 servo ready output	
			0x00· None	
			0x01: Servo alarm	
			0x02: Holding brake	
			0x03: Servo ready	
			0x04. Positioning complete	
			0x05: Positioning approach	
			0x06: Sneed consistent checkout	
			0x07. Zero speed detection	
			0x08: torque limiting	
	0	D01 terminal - function	0x00: Sneed limit	
P06-21	1	selection	0x0A. Servo warning	
			OvOB: Reserved	
			0x0C· Reserved	
			0x0D: Reserved	
			0x0E: Forward overtravel	
			0x0F: In reverse overtravel	
			0x10: Enabled state	
			0x11: Dynamic braking	
			0x12: Motor rotation detection	
			0x13:1st gain is active	
		D01 terminal - logic	0. When the state is valid DO shuts down	
	2	aslastian	1. When the state is valid, DO is on	
		selection		
	0	DO2 terminal - function	See P06-21.01	
P06-22	1	selection		
P06-22	_	DO2 terminal - logic		
	2	selection	See P06-21.2	
	0	DO3 terminal - function		
	1	coloction	See P06-21.01	
P06-23	1			
	2	DO3 terminal - logic	See P06-21.2	
		selection		
	0	DO4 terminal - function	See P06 21.01	
P06-24	1	selection	500-21.01	
	2	DO4 terminal - logic	See P06-21.2	

	selection	
	The analog 1V	Setting range: 10-2000, unit 1rpm/V Sets the coefficient between the analog command input to CN1
P06-40	corresponds to the	and the speed control command
	speed value	Example: 500 means that every V corresponds to 500
		revolutions per minute
	All filter time constant	Setting range: 0-2500, unit: 0.01ms
P06-41	All litter time constant	Set the analog command filtering time factor for Al1 input
D06 42	AX4 55 1	Setting range: -9999-9999, unit V
P06-42	All offset	Sets the zero offset of the analog instruction input by AI1
		Setting range: 0-100, unit 1%
DOC 4	The analog TV	Sets the coefficient between the analog command input by AI1
P06-4.	corresponds to the	and the speed control command
	torque value	For example, 30 represents 30% of the rated torque per V
DOC	AI2 filter time constant	Setting range: 0-6400, unit: ms
P06-4-	AI2 Inter time constant	Set the analog command filtering time coefficient input by AI2
	- AI2 biog	Setting range: -9999-9999, unit V
P00-4	5 AIZ DIAS	Sets the zero offset of the analog instruction input by AI2
		Setting range: 0-9999 Unit: mv
DOC 4	All males dead hand	Set the dead voltage value of the analog instruction, and when
P06-4	5 All analog dead band	the analog quantity is given within this positive and negative
		value range, the system defaults to zero
		Setting range: 0-9999 Unit: mv
DOG A	7 All analog doad hand	Set the dead voltage value of the analog instruction, and when
P00-4	All analog dead band	the analog quantity is given within this positive and negative
		value range, the system defaults to zero

8.2.8 P08-xx Advanced Feature Parameters

Para code		Name	Description
P08-00	0	Offline inertia	Setting range: 0-1

		identification mode	0: Default mode (set according to P08-03, P08-04 parameters)
P08-00			1: Internal setting mode (P08-03, P08-04 automatic setting)
	1	Online inertia	没完英国,01
	1	identification mode	反龙泡围: 0-1
		Inertia	Setting range, 0.20000 unit, 10/
P08-01	L	Identification Initial	Setting range: 0-20000, unit: 1%.
		Value of Inertia	Set the initial value of inertia identification inertia.
		Inertia	Satting range: 5-1000 unit: 0.1 circle
P08-02	2	identification	Set the mater rotation size value for inertia identification
		running circles	Set the motor rotation circle value for mertia identification.
		Inertia	Setting range: 10-2000 unit: rnm
P08-03	3	identification	Set the maximum munning aread for in artic identification
		maximum speed	Set the maximum running speed for mertia identification.
		Inertia	Setting range: 20-800, unit: ms.
P08-04	ł	identification	When setting the inertia identification, the acceleration and
		acceleration time	deceleration time of the motor.
		Waiting time after a	
P08-05	5	inertia	Setting range: 50-10000, unit: ms.
100 00		identification	Waiting time after a single inertia identification is completed.
		completed	
			Setting range: 0-5
			0: (waiting time P08-11->forward rotation movement P08-07) *
			movement times P08-12.
			1: (waiting time P08-11 -> reverse movement P08-07) *
			movement times P08-12.
P08-06	5	Program JOG mode	2: (waiting time P08-11->forward movement P08-07)*moving
		times P08-12->(waiting time P08-11->reverse moving	
			P08-07)*moving times P08-12.
			3: (waiting time P08-11->reverse movement P08-07)*moving
			times P08-12->(waiting time P08-11->forward moving
			P08-07)*moving times P08-12.

			4: (waiting time P08-11->forward rotation movement	
			P08-07->waiting time P08-11->reverse rotation movement	
			P08-07)*movement times P08-12.	
			5: (waiting time P08-11->reverse movement P08-07->waiting	
			time P08-11->forward movement P08-07)*moving times P08-12.	
D09 07		Program JOG	Setting range: 1-2000, unit: 0.1 circle.	
P08-07		movement distance	The number of circles per step when setting the program JOG.	
		Program IOG	Setting range: 1-10000, unit: rpm.	
P08-09		movement encod	Set the maximum speed of movement when the program JOG is	
		movement speed	running.	
		Program JOG	Setting range: 2-10000, unit: ms.	
P08-10		acceleration and	Set the acceleration and deceleration time during JOG operation	
		deceleration time	of the program.	
D00 11		Program JOG	Setting range: 0-10000, unit: ms.	
100-11		waiting time	Set the program JOG operation waiting time.	
D00 12		Program JOG	Setting range: 0-10000, unit: times.	
100-12		movement times	Set the number of times of program JOG movement.	
		Auto adjust inertia	Setting range: 0-1.	
P08-15	0	settings	0: Inertia identification during auto-tuning.	
			1: During auto-tuning, inertia identification is not performed.	
		Auto adjust mode	Setting range: 0-3	
		settings	0, 1: standard mode, close model tracking.	
			2: Positioning mode: Turn on end vibration suppression, turn on	
P08-15	1		model tracking, model tracking speed compensation 100%.	
			3: Positioning mode, pay attention to overshoot: open end	
			vibration suppression, open model tracking, model tracking	
			speed compensation 90%.	
D00 1 C		Auto adjust	Setting range: 100-7000, unit: 0.1Hz.	
P08-16		maximum gain	During auto-tuning, search for the maximum value of the gain.	
P08-17		Velocity Observer	Setting range: 10-500, unit: Hz.	

		Gain	The larger the setting value, the larger the bandwidth of the
			speed observer. When it is set to 500, the observer is invalid.
P08-18		Velocity Observer Coefficient	Setting range: 0-500, unit: %. The larger the setting value, the greater the torque effect of the speed observer.
P08-20		1st segment 1st torque command filter time constant	Setting range: 0-2500, unit: 0.01ms. The torque command filter time constant is 1. When the motor whistling occurs during operation, the value can be appropriately set larger.
P08-21		1st segment 2nd torque command filter time constant	Setting range: 0-2500, unit: 0.01ms. The torque command filter time constant is 2. When the motor whistling occurs during operation, the value can be appropriately set larger.
P08-22		2nd segment 2nd torque command filter frequency	Setting range: 100-5000, unit: Hz. Second order torque command filter frequency.
P08-23		2nd segment 2nd torque command filter Q value	Setting range: 50-100, unit: 0.01. Q value of the second order torque command filter.
P08-24	0	1st notch filter selection	Setting range: 0-1 0: the first notch filter is invalid, 1: The first notch filter is valid
	1	2nd notch filter selection	Setting range: 0-1 0: The second notch filter is invalid 1: The second notch filter is valid
	2	Reserve	
	3	Friction compensation function selection	Setting range: 0-1 0: invalid 1: Valid

	0	Adaptive1st notch	Setting range: 0-1	
		filter mode setting	0: invalid	
			1: Allow the driver to automatically set the first notch filter	
P08-25		Adaptive 2nd notch	Setting range: 0-1	
	1	filter mode setting	0: invalid	
			1: Allow the driver to automatically set the second notch filter	
		1st notch filter	Setting range: 300-5000, unit: Hz.	
D00 20		frequency	Center frequency of notch filter 1. P08-24-0 needs to be set to	
P08-30			enable to be valid.	
			When set to 5000, the notch filter is invalid.	
		1st notch filter	Setting range: 50-1000 Unit: 0.01	
P08-31		width	Notch Width Class for Notch Filter 1	
			is the ratio of the width to the center frequency	
		1st notch filter	Setting range: 0-99.	
		depth	Notch depth level for notch filter 1.	
500.00			It is the ratio relationship between the input and the output for	
P08-32			the center frequency of the notch filter.	
			The larger the parameter, the smaller the notch depth and the	
			weaker the effect.	
P08-33		2nd notch filter		
		frequency	Same as P08-30. P08-24-1 needs to be set to enable to be valid	
		2nd notch filter	Course of D00-24	
P08-34		width	Same as P08-31	
P08-35		2nd notch filter		
		depth	Same as P08-32	
		3rd notch filter		
P08-36		frequency	Same as P08-30	
P08-37		3rd notch filter		
		width	Same as P08-31	
P08-38		3rd notch filter	Course of D00 22	
		depth	Same as P08-32	

1	Frequency sweep	Setting range: 1-300
P08-51	torque amplitude	When the auxiliary function F22 is executed, this set value is used
		as the maximum value of the frequency sweep torque.

8.3 List of monitoring items

Display number	Display item	Explanation	Unit
d00.C.PU	Sum of position command pulses	This parameter can monitor the number of pulses sent by the user to the servo drive, so as to confirm whether there is any pulse loss.	Command unit
d01.F.PU	Sum of position feedback pulses	This parameter can monitor the number of pulses fed back by the servo motor. The unit is consistent with the user command unit	Command unit
d02.E.PU	Position deviation pulse number	This parameter can monitor the pulse number of position lag during the operation of the servo system. The unit is consistent with the user input command unit	Command unit
d03.C.PE	Sum of position given pulses/ Gantry motor feedback pulse	This parameter can monitor the number of pulses sent by the user to the servo drive. Unit: When using an absolute value motor, calculate as 8388608 per revolution.	Encoder unit
d04.F.PE	Sum of position feedback pulses/	This parameter can monitor the number of pulses fed back by the servo motor. Unit: When using an absolute value motor, calculate as 8388608 per revolution.	Encoder unit
d05.E.PE	Position deviation pulse number/ Gantry pulse deviation	This parameter can monitor the pulse number of position lag during the operation of the servo system. Unit: When using an absolute value motor, calculate by 8388608 per revolution.	Encoder unit
d06.C.Fr	Pulse command input frequency	This parameter can monitor the input frequency of external pulse command.	KHz
d07.C.SP	Speed control command	This parameter can monitor the servo reference speed when the servo motor is running.	rpm
d08.F.SP	Motor speed	This parameter can monitor the actual speed of the	rpm

		servo motor when it is running.	
d09.C.tq	Torque command	This parameter can monitor the servo given torque when the servo motor is running.	%
d10.F.tq	Actual torque	This parameter can monitor the torque feedback when the servo motor is running.	%
d11.AG.L	Average torque	This parameter can monitor the average torque of the servo motor in the past 10 seconds	%
d12.PE.L	Peak torque	This parameter can monitor the peak torque of the servo motor after power on.	%
d13.oL	Cumulative load rate	This parameter can monitor the load rate of the driver. When it exceeds 100, the driver will alarm for overload.	%
d14.rG	Regenerative load factor	This parameter can monitor the load rate of the regeneration resistor. When it exceeds 100, the drive will alarm for regeneration overload.	%
d15.PE.S	Actual speed peak	This parameter can monitor the peak speed of the servo motor after power-on.	rpm
d16.I.Io	Input IO status	This parameter can monitor the input port status of CN1. The upper vertical bar represents high level (optocoupler cut-off), the lower vertical bar represents low level optocoupler conduction). The corresponding relationship with the input port is that the 8 vertical bars from right to left on the operation panel correspond to DI1-DI6 respectively.	Binary system
d17.o.Io	Output IO status	This parameter can monitor the output port status of CN1. The upper vertical bar represents the conduction of the optocoupler, and the lower vertical bar represents the cut-off of the optocoupler. The corresponding relationship with the output port is that the 5 vertical bars from right to left on the operation panel correspond to DO1-DO4 respectively.	Binary system
d18.AnG	Motor Mechanical Angle	This parameter can monitor the mechanical angle of the motor, and one rotation is 360 degrees.	0.1 degree
d19.HAL	Electrical Angle	Electrical angle of an absolute encoder.	0.1 degree
d20.ASS	Absolute encoder single-turn value	This parameter can monitor the feedback value of the absolute encoder, and the value changes between	Decimalism

		0-8388607 for one revolution	
d21.ASH	Absolute encoder multi-turn value	This parameter can monitor the number of revolutions of the multi-turn absolute encoder motor.	Decimalism
d22.J-L	Inertia ratio	This parameter can monitor the real-time inertia of the load carried by the motor	%
d23.dcp	Main circuit voltage (DC value)	This parameter can monitor the voltage value of the main circuit	V
d24.Ath	Drive temperature	This parameter can monitor the drive temperature	1 degree
d25.tiE	Cumulative running time	This parameter can monitor the running time of the drive, unit: second	1 Second
d26.1.Fr	Resonant frequency 1	This parameter can monitor resonance frequency 1, high frequency resonance frequency	Hz
d28.2.Fr	vibrational frequency 2	This parameter can monitor vibrational frequency, low frequency resonance frequency	Hz
d29.cn	Current control mode	This parameter can monitor the current control mode	
d30.Ai1	Ail port input voltage	This parameter can monitor the Ail input voltage value.	0.001V
d31.Ai2	Ai2 port input voltage	This parameter can monitor the Ai2 input voltage value.	0.001V
d32.c.Er	Encoder communication abnormal times	This parameter can monitor the number of encoder communication abnormalities after power-on	
	Handwara madal	This nonometer can meniter the driver model	
d33.H1	(hardware information)	(hardware information)	
d34.H2	Hardware version	This parameter can monitor the hardware version number	
d35.S1	Software version	This parameter can monitor the software version. High 8 bits: FPGA version; Low bits: ARM version	
	Sum of position	This parameter can monitor the sum of position	command
d36.C.PU	command pulses	command pulses (accumulated after power on)	unit
d37.F.PU	Sum of position	This parameter can monitor the sum of position	command
	feedback pulses	feedback pulses (accumulated after power on)	unit

d38.P.Er	Parameter number with	This parameter can query the abnormal parameter	
	unusual value	number when alarm 107	
d39.Adu	Advanced Function	This parameter can query the warning code when the	
	Exception Codes	advanced function is abnormal	

8.4 Auxiliary function

Display items	Function	Operate		
F01.JoG	JOG run	 Press the M button on the operation panel to switch to the auxiliary mode F**, operate the Up/Down button to F01.JoG, and press the ENT button to enter the Jog working mode. The default Jog speed is 30rpm (P04-01 sets the JOG running speed). Press the Up button, and the motor will rotate forward at a speed of 30r/min; press the Down button, and the motor will rotate reversely at a speed of 30r/min. Press the M button to exit Log mode 		
F02.run	Forcibly enable the running speed mode	 Press the M button on the operation panel to switch to the auxiliary mode F**, operate the Up/Down button to F02.run, and press the ENT button to enter this working mode. Press the Up button, the motor rotates forward, press the Up button for a long time, the motor speed will continue to increase; press the Down button, the motor will reverse, and press the Down button for a long time, the motor speed will continue to increase. Press the M button to exit this mode. 		
F03.Ai1	Analog input 1 automatic zero calibration (VCMD)	 Press the M button on the operation panel to switch to the auxiliary mode F**, operate the Up/Down button to F03.Ai1, press the ENT button, and of.Ai1 will be displayed. Press and hold the ENT button until the finsh flashes, and the Ai1 zero automatic calibration is completed. Press the M button to exit this mode. 		
F04.Ai2	Analog input 2 automatic calibration (TCMD)	 Press the M button on the operation panel to switch to the auxiliary mode F**, operate the Up/Down button to F04.Ai2, press the ENT button, and of.Ai2 will be displayed. Press and hold the ENT button until the finsh flashes, and the Ai2 		
		zero automatic calibration is completed.		
------------	---	--	--	--
		3. Press the M button to exit this mode		
	Current sensor automatic zero	Same as F03.Ai1		
E05 4i3		Note: When performing this function, the servo must be turned off		
1 05.7 115		and enabled, otherwise the finsh flashing page will not appear, and the		
	drift compensation	automatic calibration cannot be completed		
		This auxiliary function must be operated in the disabled state, and the		
		operation steps are as follows		
		1. Press the M button on the operation panel to switch to the auxiliary		
E06 En0	Absolute encoder	mode F**, oper	rate the Up/Down button to F06.En0, press the ENT	
FUO.EIIU	fault clearing	button, and clr.	Ft will be displayed.	
		2. Press and ho	ld the ENT button until finsh flashes, and the absolute	
		encoder fault is	cleared.	
		3. Press the M	button to exit this mode.	
		This auxiliary function must be operated in the disabled state, and the		
		operation steps are as follows		
	Absolute encoder multi-turn value reset	1. Press the \mathbf{M} button on the operation panel to switch to the auxiliary		
E07 E-1		mode F**, operate the Up/Down button to F07.En1, press the ENT		
F07.En1		button, and clr.EH will be displayed.		
		2. Press and hold the ENT button until the finsh flashes, and the		
		multi-turn value of the absolute encoder is cleared.		
		3. Press the M button to exit this mode.		
		This auxiliary f	function must be operated in the disabled state, and the	
		operation steps are as follows		
		1. Enter the factory reset interface: press the M button on the		
		operation panel, switch to the auxiliary mode F^{**} , press the Up/Down		
		button to F10.ini, press the ENT button to enter		
		2. Select the recovery parameter range: enter the corresponding code		
F10.ini	Restore factory	as shown in the table below, and select the parameter range to be		
	setting	recovered. Press and hold the ENT button, a progress bar will appear		
		until finsh flashes, and the factory reset will be completed.		
		Code	Meaning	
		51	Restoring Level 1 Permission Parameters	
			(Application Parameters)	
		52	Restore level 2 authority parameters (application	
			parameters + motor parameters)	

		55	Restore all parameters (including hidden	
		parameters)		
		1. Press the M button on the operation panel to switch to the auxiliar		
		mode F**, operate the Up/Down button to F11.Err, press the ENT		
		button, and the past 8 historical fault information will be displayed.		
		The number on the left is F0, which represents the latest fault		
		2. Press the Up button to display past faults one by one. Press and		
F11.Err	Fault record	hold the ENT button to display the fault occurrence time, and the time		
	display	coordinates refer to d25.tiE.		
		3. Press the M	button to exit this mode.	
		Note: For faul	ts that occur during power on and off multiple times	
		within 30 min	utes, the recording time may have a deviation of 30	
		minutes.		
		1. Press the M	button on the operation panel to switch to the auxiliary	
		mode F**, ope	erate the Up/Down button to F12.clr, press the ENT	
F12.clr	Alarm log clear	button, the panel displays clr.Er, press the ENT button to clear		
		F11.Err The alarm information recorded in the		
		2. Press the M	button to exit this mode.	
		1. Press the M	button on the operation panel to switch to the auxiliary	
	Operation	mode F**, ope	erate the Up/Down button to F13.unL, and press the	
		ENT button to	edit the operation authority.	
		0: All paramet	ers are locked and cannot be changed;	
F13.unL	authority setting	1: P00-** para	meters are locked and others can be changed;	
	autionty setting	2: Not locked	and can be changed. Set 0,1 value, it can be saved after	
		power off. Wh	en setting 2, it will not be saved when power off.	
		2. Press the M	button to exit this mode.	
		1. Press the M	button on the operation panel to switch to the auxiliary	
		mode F**, ope	erate the Up/Down button to F14. out, and press the	
	Force output port	ENT button to	o force the output port level through the Up/Down	
F14. out		button. The co	rresponding relationship with the output port is that the	
		4 vertical bars	from right to left on the operation panel correspond to	
		DO1-DO4 resp	pectively	
		2. Press the M	button to exit this mode.	
		1. Press the M	button on the operation panel to switch to the auxiliary	
F17.rES	Software reset	mode F**, ope	erate the Up/Down button to F17.rES, press the ENT	
		button, the par	el displays rESEt, and press the ENT button to reset	

		the software.		
		2. Press the M button to exit this mode.		
		1. Press the M button on the operation panel to switch to the auxiliary		
		mode F**, operate the Up/Down button to F18.PJG, and press the		
		ENT button to execute the program JOG function.		
E10 DIC	D IOC	2. Press the UP button or DOWN button, the motor will run		
F18.PJG	Program JOG	according to the operating conditions set by P08-06~P08-12.		
		3. Press the M button to exit this mode.		
		Note: This mode can only be operated under rdy, otherwise the drive		
		will alarm A.905		
		1. Press the M button on the operation panel to switch to the auxiliary		
		mode F**, operate the Up/Down button to F19.J-L, press the ENT		
		button to enter the load inertia measurement function, the panel		
		displays 1.00, long press the ENT button, the panel displays - 1.00		
E10 L L	Load inertia ratio	2. Press the UP button, the motor will run back and forth according to		
F19.J-L	measurement	the number of turns set by P08-02, the maximum speed set by P08-03		
		the acceleration and deceleration time set by P08-04, and the waiting		
		time of P08-05 until the load appears. Inertia ratio.		
		3. Record the value and write it into parameter P01-04		
		4. Press the M button to exit this mode		

Chapter 9 Fault Analysis and Treatment

Alarm type	Serial number	Alarm content
	E. 051	EEPROM parameter exception
	E. 052	FPGA communication error
	E. 053	Initial failure
	E. 054	Operation timeout
	E. 060	Hardware match exception
	E. 061	Combination of motor and drive is abnormal
	E. 063	Overcurrent detection
	E. 064	Motor overcurrent detection
	E. 068	Drive DC bus overcurrent detection
Hardware	E. 069	FPGA clock error
malfunction	E. 071	Abnormal detection of U-phase current
	E. 072	Abnormal detection of W-phase current
	E. 100	Abnormal parameter combination
	E. 102	DI port allocation exception
	E. 106	The frequency division output setting is abnormal
	E. 107	Parameter Error
	E. 108	Parameter setting out of range
	E. 120	Servo ON command invalid alarm
	E. 121	External input alarm signal
	E. 305	Motor cable disconnected
	E. 400	Power line phase loss
	E. 401	Undervoltage

9.1 Fault alarm information table

	E. 402	Overvoltage	
	E. 410	Instantaneous overload	
	E. 412	Continuous overload	
	E. 420	Motor overspeed	
Malfunction	E. 421	Out of control detection	
Manunction	E. 430	Abnormal regeneration	
	E. 431	regeneration overload	
	E. 435	Inrush current limiting resistor overload	
	E. 436	DB overload	
	E. 440	Abnormal drive temperature	
	E. 500	Frequency divider output overspeed	
	E. 501	Position deviation over threshold	
	E. 503	Position deviation over threshold when the servo is ON	
	E. 510	Gantry position deviation is too large	
	E. 511	Gantry axis alarm	
	E. 520	Vibration alert	
	E. 620	Encoder disconnection	
	E. 621	Encoder built-in data does not match	
	E. 622	Encoder built-in data verification error	
	E. 641	Encoder overheating (inside encoder)	
Encoder failure	E. 643	Encoder battery voltage failure (encoder internal)	
	E. 644	The multi-turn data of the encoder is abnormal (inside the encoder)	
	E. 645	Encoder multi-turn count overflow (encoder internal)	
	E. 646	Encoder communication failure	
	E. 649	Encoder communication CRC failure	
	A.900	Position deviation over threshold	
Warn	A.901	The position deviation is over threshold while servo ON	

	A.905	Auxiliary (F**) function cannot be executed when servo is ON
	A.910	Overload
	A.911	Vibration
	A.912	The temperature of the control board is abnormal
	A.913	Abnormal drive temperature
	A.920	Regeneration overload
	A.921	DB overload
Warn	A.923	The internal fan of the servo unit stops
	A.930	Encoder battery low voltage
	A.941	Parameter changes that require power cycle
	A.942	EEPROM write failed
	A.950	Overtravel
	A.960	Repeated definition of input terminal
	A.971	Undervoltage

9.2 Fault alarm causes and solutions

E.051: EEPROM parameter exception

Fault alarm reason	Fault alarm check	treatment measures
The EEPROM data of the servo	Perform factory initialization	If it persists, replace the drive
unit is abnormal	(F10.INI)	

E.052: FPGA communication error

Fault alarm reason	Fault alarm check	treatment measures
The main control MCU is	Power on again	Turn off the alarm by setting
powered on and initialized		parameter Pn044
abnormally		If it persists, replace the drive

E.053: Initialization failed

Fault alarm reason	Fault alarm check	treatment measures
The main control MCU failed to	Power on again	If it persists, replace the drive
be powered on and initialized		

E.054: Operation timeout

Fault alarm reason	Fault alarm check	treatment measures
Operation timeout	Power on again	If it persists, replace the drive

E.060: Hardware match error

Fault alarm reason	Fault alarm check	treatment measures
Hardware match error	Perform Factory Initialization	If it persists, contact the
	(F10.INI)	manufacturer

E.061: Combination of motor and drive is abnormal

Fault alarm reason	Fault alarm check	treatment measures
The servo unit does not match the	Check whether the servo unit	Replace the servo unit that matches
servo motor model	supports the motor	the motor

E.063: Overcurrent detection

Fault alarm reason	Fault alarm check	treatment measures
U, V, W interphase short circuit	Whether there is a short circuit in	correct wiring
	the U, V, W wiring.	If there is no alarm, check the
	Whether there is a short circuit	power line and motor for short
	between B1 and B3	circuit
Ther drive is damaged.	Disconnect the U, V, W wires on	If the U, V, W wires is
	the drive, and the drive is enabled	disconnected, and the starting
		driver still alarms, replace the
		driver

E.068: Drive DC bus overcurrent detection

Fault alarm reason	Fault alarm check	treatment measures
U, V, W short circuit to earth PE	Check if the wiring is correct	Correct wiring, replace the motor
	Try to remove the motor U, V, W	wire and motor.
	wires	If it persists, replace the drive

E.069: FPGA clock error

Fault alarm reason	Fault alarm check	treatment measures
FPGA clock is abnormal	FPGA clock is abnormal	Set P00-47.1 to 0 to turn off the
		alarm.
		If it persists, replace the drive

Fault alarm reason	Fault alarm check	treatment measures
The sampling data of the current	Check whether the UVW wiring is	Correct wiring
sensing device is abnormal	correct and whether the connection	Set P00-46.2 to 0 to turn off the
	is reliable	alarm
		If it persists, replace the drive

E.071: Abnormal detection of U-phase current

E.072: Abnormal detection of W-phase current

Fault alarm reason	Fault alarm check	treatment measures
The sampling data of the current	Check whether the UVW wiring is	Correct wiring
sensing device is abnormal	correct and whether the connection	Set P00-46.3 to 0 to turn off the
	is reliable	alarm
		If it persists, replace the drive

E.100: Abnormal parameter combination

Fault alarm reason	Fault alarm check	treatment measures
Parameter setting error	Check the set parameters	Set parameters correctly
		If it always appears, please
		initialize the parameters

E.102: DI port allocation exception

Fault alarm reason	Fault alarm check	treatment measures
At least 2 input ports have the	(P06-11, P06-12······)	Set parameters correctly
same function selection	Check the input port function	Execute parameter initialization
	selection parameters (P06-11,	and power on again
	P06-12)	

E.106: Frequency division pulse output setting is abnormal

Fault alarm reason	Fault alarm check	treatment measures
Frequency division pulse output	Check the frequency division pulse	Correctly set the frequency division
parameter setting is out of range	output setting parameters. P03-25	pulse output parameters
		Bus encoder P03-25<65535
		The drive is powered on again

E.107: Parameter error

Fault alarm reason	Fault alarm check	treatment measures
--------------------	-------------------	--------------------

Parameter exception	Check whether the parameter range,	Set parameters correctly
	etc. are reasonable	Perform parameter initialization

E.108: Parameter setting out of range

Fault alarm reason	Fault alarm check	treatment measures
Parameter setting out of range	Check whether the parameter range,	Set parameters correctly
	etc. are reasonable	Perform parameter initialization

E.120: Servo ON command invalid alarm

Fault alarm reason	Fault alarm check	treatment measures
When the servo is ON, the power	Check wiring and input voltage	Check wiring
supply input ports L1, L2, and L3		The drive is powered on again
are not powered		

E.121: External input alarm signal

Fault alarm reason	Fault alarm check	treatment measures
External input alarm signal	Check whether the relevant external	Correct use of relevant parameters
	input port has signal input and	
	whether the relevant parameters of	
	the I/O port are correct	

E.305: Motor cable disconnected

Fault alarm reason	Fault alarm check	treatment measures
Motor U,V,W wires disconnected	Check whether the UVW wiring is	Make sure UVW wiring is correct
	correct and whether the connection	and reliable
	is reliable	Set P00-47.0 to 0 to turn off the
		alarm

E.400: Power line phase loss

Fault alarm reason	Fault alarm check	treatment measures
Main circuit input power line	Check whether the three phases of	Make sure the wiring is correct, use
phase loss	the main circuit input L1, L2, and	the correct voltage source or series
	L3 are connected	connection regulator.
		P00-39.0 can close the phase loss
		alarm

E.401: Undervoltage

Fault alarm reason	Fault alarm check	treatment measures
The input voltage of the main	Check whether the wiring of the	Make sure the wiring is correct, use
circuit is lower than the rated	main circuit input L1, L2, L3 is	the correct voltage source or series
voltage value or there is no input	correct, and check the voltage value.	regulator.
voltage	The bus voltage can be monitored	P00-52 can modify the alarm
	through d23.dcp	threshold.

E.402: Overvoltage

Fault alarm reason	Fault alarm check	treatment measures
Main circuit input voltage is too	Use a voltmeter to test whether the	Use the correct voltage source or
high	input voltage of the main circuit is	series regulator
	correct	
The regeneration resistor is not	Check if a proper regenerative	Correctly connect and match the
connected or the selection of the	resistor is connected	regenerative resistor
regeneration resistor is wrong		
Incorrect parameter setting	Confirm that the parameter setting	Correctly set parameters and
	of P00-30~P00-34 is consistent	connect external regenerative
	with the resistance connection	resistor
	method	
Drive hardware failure	When it is confirmed that the input	Please send it back to the dealer or
	voltage is correct, there is still an	the original factory for inspection
	overvoltage alarm	

E.410: Instantaneous overload

Fault alarm reason	Fault alarm check	treatment measures
The machine is stuck when the	Check whether the mechanical	Adjust the mechanical structure
motor starts	connection is stuck	
P00-50 parameter setting is	Check P00-50 parameter value	Correctly set the P00-50 parameters
unreasonable		
Drive hardware failure	Confirm that the mechanical part is	Please send it back to the dealer or
	normal and still alarm	the original factory for inspection

E.412: Continuous overload

Fault alarm reason	Fault alarm check	treatment measures
Continuous use exceeding the	It can be monitored through d13.oL.	Change to a higher power motor or
rated load of the drive	in the monitoring mode	reduce the load

Improper setting of control	1. Is the mechanical system	1. Adjust the control loop gain
system parameters	installed?	2. Acceleration and deceleration
	2. The acceleration setting is too	setting time slows down
	large	
	3. Whether the gain parameters are	
	set correctly	
Motor wiring error	Check U, V, W wiring	Correct wiring

E.420: Over speed

Fault alarm reason	Fault alarm check	treatment measures
Input speed command is too large	Check if the input signal is normal	Adjust the frequency of the input
		signal
Overspeed judgment parameter	Check whether P04-05 (overspeed	Correctly set P04-05 (overspeed
setting is unreasonable	alarm value) is set properly	alarm value)

E.421: Out of control detection

Fault alarm reason	Fault alarm check	treatment measures
Motor power line U, V, W wiring	Check wiring	Correct wiring
error		
Incorrect motor parameter setting	Check P00-05; and whether the	Set parameters correctly
	encoder parameter setting is correct	Set P00-46.1 to 0 to close
		out-of-control detection

E.430: Abnormal regeneration

Fault alarm reason	Fault alarm check	treatment measures
Wrong selection of regenerative	Check the connection of the	If the connection is normal, please
resistor or no external	regenerative resistor	return the drive to the factory for
regenerative resistor		inspection.
		The alarm can be turned off by
		setting P00-44.2 to 0
Parameter setting error	Please confirm the parameter	Correctly set parameter values
	settings of P00-30~P00-34	

E.431: Regeneration overload

Fault alarm reason	Fault alarm check	treatment measures
Wrong selection of regenerative	Check the connection status of the	Selecting an Appropriate

resistor or no external	regenerative resistor and whether	Regeneration Resistor
regenerative resistor	the resistance and power of the	
	regenerative resistor are appropriate	
Incorrect parameter setting	Confirm whether the parameters	Correctly set parameter values
	P00-30~P00-35 are correct	

E.435: Inrush current limiting resistor overload

Fault alarm reason	Fault alarm check	treatment measures
Frequent power-on of drive power		P00-44 can be set to close the
		alarm

E.440: Abnormal drive temperature

Fault alarm reason	Fault alarm check	treatment measures
The internal temperature of the	Check whether the heat dissipation	Improve the cooling conditions of
drive is higher than the set value	condition of the drive is good	the drive, if the alarm still occurs,
of P00-41		please return the drive to the
		factory for inspection
Overheat alarm threshold setting	Check parameter P00-41	Correctly set P00-41
is too small		

E.501: Position deviation over threshold

Fault alarm reason	Fault alarm check	treatment measures
The position deviation is too	Confirm the parameter setting of	Increase the setting value of P03-15
large, the parameter setting is too	P03-15 (position deviation is too	(position deviation is too large
small	large setting)	setting)
The gain value is set too small	Confirm whether the gain	Re-adjust the gain parameters
	parameters are set properly	correctly
The internal torque limit value is	Confirm the internal torque limit	Re-adjust the internal torque limit
set too small	value	value correctly
Excessive external load	Check external load	Reduce the load or change to a
		high-power motor

E.503: Position deviation over threshold when the servo is ON

Fault alarm reason	Fault alarm check	treatment measures
The position deviation is too large	Confirm the parameter settings of	Correctly set relevant parameters
when the servo is ON	P03-30, P03-31, and P03-33	

The gain value is set too small	Confirm whether the gain	Re-adjust the gain parameters
	parameters are set properly	correctly
The internal torque limit value is	Confirm the internal torque limit	Re-adjust the internal torque limit
set too small	value	value correctly
Excessive external load	Check external load	Reduce the load or change to a
		high-power motor

E.510: Gantry position deviation is too large

Fault alarm reason	Fault alarm check	treatment measures
Gantry position deviation is too	Confirm the parameter setting of	Correctly set parameter values
large	P03-53	
The gain value is set too small	Confirm whether the gain	Re-adjust the gain parameters
	parameters are set properly	correctly
The internal torque limit value is	Confirm the internal torque limit	Re-adjust the internal torque limit
set too small	value	value correctly
Excessive external load	Check external load	Reduce the load or change to a
		high-power motor

E.511: Gantry axis alarm

Fault alarm reason	Fault alarm check	treatment measures
For dual-axis drives, P00-39 sets	Detect whether each axis is in alarm	Carry out alarm (other alarm)
the axis-related alarm, and there is		troubleshooting
an axis alarm at the same time.		
Dual-axis drive, open gantry	Detect whether each axis is in alarm	Carry out alarm (other alarm)
function, one of the axes will		troubleshooting
alarm		

E.620: Encoder disconnection e

Fault alarm reason	Fault alarm check	treatment measures
Bus encoder communication	Check encoder wiring	Correct wiring
failure		

E.621: Encoder built-in data does not match

Fault alarm reason	Fault alarm check	treatment measures
Encoder read and write exception	Check encoder wiring	Correct wiring
Abnormal motor parameter setting	Correctly set the motor parameters	Set parameters correctly

|--|

E.622: Encoder built-in data verification error

Fault alarm reason	Fault alarm check	treatment measures
Encoder built-in data verification	Check encoder wiring	If the connection is normal, please
error	Confirm that the encoder shielding	return the driver to the factory for
	wire is connected correctly	repair

E.641: Encoder overheating (inside encoder)

Fault alarm reason	Fault alarm check	treatment measures
Encoder overheating (inside	Check encoder temperature	If the temperature is normal, the
encoder)		alarm can be turned off by
		modifying the parameter P00-07.2

E.643: Battery failure of bus encoder

Fault alarm reason	Fault alarm check	treatment measures
When the bus encoder is set to	Check the voltage of the external	When the battery voltage is lower
multi-turn absolute value, the	battery of the encoder and confirm	than 3.0V, replace the battery,
voltage of the external battery is	that it is higher than 3.0V	Above 3V, use the auxiliary
low		function F16.EN0 to clear the
		alarm
		The alarm can be turned off by
		parameter P00-07

E.644: Bus encoder multi-turn abnormal

Fault alarm reason	Fault alarm check	treatment measures
The number of revolutions of the	The number of turns can be	Use instruction F06.En1 to clear
bus encoder is out of range	monitored through the monitoring	the multi-turn value
	mode d21.ASH, and the multi-turn	
	absolute motor cannot rotate in one	
	direction for a long time.	

E.645: Bus encoder multi-turn overflow fault

Fault alarm reason	Fault alarm check	treatment measures
The number of revolutions of the	The number of turns can be	Use command F06.En1 to clear the
bus encoder is out of range	monitored through the monitoring	multi-turn value.
	mode d21.ASH, and the multi-turn	The alarm can be turned off by

absolute motor cannot rotate in one	parameter P00-07
direction for a long time.	

E.646: Encoder communication failure

Fault alarm reason	Fault alarm check	treatment measures
Encoder communication failure	Check encoder	Correctly install the encoder

E.649: Encoder communication CRC failure

Fault alarm reason	Fault alarm check	treatment measures
Encoder communication CRC	Check encoder	Correctly install the encoder
failure		

A.900: Position deviation over threshold

Fault alarm reason	Fault alarm check	treatment measures
Excessive position deviation	Confirm the parameter setting of	Increase the setting value of
warning	P03-15/P03-30 (position deviation	P03-15/P03-30 (position deviation
	is too large setting)	is too large setting)
The gain value is set too small	Confirm whether the gain	Re-adjust the gain parameters
	parameters are set properly	correctly
The internal torque limit value is	Confirm the internal torque limit	Re-adjust the internal torque limit
set too small	value	value correctly
Excessive external load	Check external load	Reduce the load or change to a
		high-power motor

A.901: Position deviation over threshold when the servo is ON

Fault alarm reason	Fault alarm check	treatment measures
The position deviation is too large	Confirm P03-31/P03-33 parameter	Increase the set value of
when the servo is ON	setting	P03-31/P03-33
Pulse command frequency is too	Pulse command frequency is too	Reduce the pulse command
high when servo is ON	high when servo is ON	frequency when the servo is ON

A.905: The FN function cannot be executed when the servo is ON

Fault alarm reason	Fault alarm check	treatment measures
The FN function cannot be	The FN function cannot be executed	Under SV-OFF, execute FN
executed when the servo is ON	when the servo is ON	function

A.910: Overload warning

Fault alarm reason	Fault alarm check	treatment measures
overload warning	It can be monitored through d13.oL. in the monitoring mode	Properly increase P00-51 (overload warning value)
Improper setting of control system parameters	 Is the mechanical system installed? The acceleration setting constant is too fast Whether the gain parameters are set correctly 	 Adjust the control loop gain Acceleration and deceleration setting time slows down
Motor wiring error	Check U, V, W wiring	Correct wiring

A.911: Vibration warning

Fault alarm reason	Fault alarm check	treatment measures
Vibration warning	It can be monitored by d26.1.Fr in	When the equipment is normal, set
	the monitoring mode	the value of P02-51 correctly, or set
		P02-50 to 0 to close the warning

A.912: The temperature of the control board is abnormal

Fault alarm reason	Fault alarm check	treatment measures
The temperature of the control		Restart the device and still alarm
board is abnormal		replace drive

A.913: Abnormal drive temperature

Fault alarm reason	Fault alarm check	treatment measures
Abnormal drive temperature	Driver temperature monitoring can be performed through d24.Ath in	When the equipment is normal, you can set P02-50 to 0 to close the
	monitor mode	warning

A.920: Regeneration Overload Warning

Fault alarm reason	Fault alarm check	treatment measures
Wrong selection of regenerative	Check the connection status of the	Selecting an Appropriate
resistor or no external	regenerative resistor and whether	Regeneration Resistor
regenerative resistor	the resistance and power of the	

	regenerative resistor are appropriate	
--	---------------------------------------	--

A.930: Absolute encoder battery failure

Fault alarm reason	Fault alarm check	treatment measures
Absolute encoder battery failure	Check the voltage of the external	The battery voltage is lower than
	battery of the encoder and confirm	3.0V, replace the battery
	that it is higher than 3.0V	Use command F06.En0 to clear
		when it is higher than 3.0V

A.941: Parameter changes need to be powered off and restarted to take effect

Fault alarm reason	Fault alarm check	treatment measures
After modifying the parameters,		Power off and restart
the parameters will take effect		
after re-powering		

A.960: Repeated definition of input terminal

Fault alarm reason	Fault alarm check	treatment measures
Repeated definition of input	Check whether the relevant external	Correctly set relevant parameters
terminal	input port has signal input and	
	whether the relevant parameters of	
	the I/O port are correct	

A.971: Undervoltage warning

Fault alarm reason	Fault alarm check	treatment measures
The input voltage of the main	Check whether the wiring of the	Make sure the wiring is correct and
circuit is lower than the rated	main circuit input L1, L2, L3 is	use the correct voltage source or
voltage value or there is no input	correct, and check the voltage	series regulator.
voltage	value . The bus voltage can be	P00-52 can modify the alarm
	monitored through d23.dcp	threshold or close the alarm

Chapter 10 Communication

10.1 Modbus communication parameter setting

Para code	Name	Explanation
P00-23	slave address	The setting range: 0-255, default 1
100 25		Set according to equipment requirements
	485 communication	The setting range: 0-7, default 2
	baud rate selection	0: 2400
		1: 4800
		2: 9600
P00-24.0		3: 19200
		4: 38400
		5: 57600
		6: 115200
		7: 25600
	485 communication	The setting range: 0-3, default 0
	parity check mode	0: no parity, 2 stop bit
P00-24.1	·····	1: even parity, 1 stop bit
		2: Odd parity, 1 stop bit
		3: No parity,, 1 stop bit
		The setting range: 0-100, default 0
D00.20	Modbus response	When the parameter is set to 0, it will respond according to the standard
P00-26	delay	communication. When the parameter setting has a value, the Modbus
		communication response time will respond according to the set time

10.2 Modbus communication supports reading and writing parameter settings

monitoring	definition	unit	Decimal communication
items			address (double address,
			high order first)
d00. C. PU	Sum of position command pulses	command unit	2100-2101
d01. F. PU	Sum of position feedback pulses	command unit	2102-2103
d02. E. PU	Position deviation pulse number	command unit	2104-2105
d03. C. PE	Sum of position given pulses/	encoder unit	2106-2107
	Gantry motor feedback pulse		
d04. F. PE	Sum of position feedback pulses/	encoder unit	2108-2109
d05. E. PE	Position deviation pulse	encoder unit	2110-2111
	number/Gantry pulse deviation		
d06. C. Fr	Pulse command input frequency	Kpps	2112
d07. C. SP	Speed control command	rpm	2113
d08. F. SP	Motor speed	rpm	2114
d09. C. tq	Torque command	%	2115
d10. F. tq	Actual torque	%	2116
d11. AG. L	Average torque		2117
d12. PE. L	Peak torque	%	2118
d13. oL	Cumulative load rate	%	2119
d14. rG	Regenerative load factor	%	2120
d15. PE. S	Actual speed peak	rpm	2121
d16. I. Io	Input IO status	binary	2122
d17. o. Io	Output IO status	binary	2123
d18. AnG	Motor Mechanical Angle	0.1 degree	2124
d19. HAL	Electrical Angle	0.1degree	2125

Support	reading	the	address	list	of	monitored	items

d20. ASS	Absolute encoder single-turn value	r	2126-2127
d21. ASH	Absolute encoder multi-turn value		2128
d22. J-L	Inertia ratio	1%	2129
d23. dcp	Main circuit voltage (DC value)	1Vdc	2130
d24. Ath	Drive temperature	1 Celsius	2131
d25.tiE	Cumulative running time	1 Second	2132-2133
d26. 1. Fr	Resonant frequency 1	Hz	2134
d28. 2. Fr	vibrational frequency 2	Hz	2136
d29. cn	Current control mode		2137
d30.Ai1	Ai1 port input voltage	0.001V	2138
d31.Ai2	Ai2 port input voltage	0.001V	2139
d32. c. Er	Encoder communication abnormal		2140
	times		
d33. H1	Hardware model (hardware		2141
	information)		
d34. H2	Hardware version		2142
d35. S1	Software version		2143
d36. C. PU	Sum of position command pulses	command unit	2144-2145
d37. F. PU	Sum of position feedback pulses	command unit	2146-2147
current			2180
fault number			

Note: 1. All parameters support 485 read, parameter read and write addresses refer to parameter codes: such as P03-09, read and write addresses are decimal 309

3. Parameter writing refers to the drive permission setting. For example, if the current permission level of the drive is 1, the parameters higher than permission 1 cannot be written. Parameter writing will not be saved when the power is off.

10.3 Overview of Modbus communication protocol

10.3.1 introduction

Nexus monitors can communicate with other devices using the RTU transfer mode of the AEG Modicon Modbus protocol. This communication works with both RS-232 and RS-485 standards.

- RS-232 communication requires a single connection between a Nexus monitor and one other device, and only channel 1 of the Nexus monitor is used.
- RS-485 supports multiple Nexus monitors connected to a network, is a two-wire connection up to 115200 baud, ports 1-4 are available.

10.3.2 communication packet

Communication occurs between a Modbus master and one or more Nexus slaves. The master initiates all communication by sending a "request packet" to the designated slave, and the slave replies with a "reply packet". The communication packet is arranged in a string of 8-bit bytes, as follows:

- slave address, one byte
- function code, one byte
- · Data, N bytes, high byte first, low byte after
- CRC (RTC error detection code), 2 bytes
- Dead time, 3.5 byte transfer time.

A maximum of 127 registers can be sent in a single communication packet.

10.3.3 Slave address and send request

Each slave device on the communication bus has its own dedicated address and only responds to the address addressed by the master. Packets returned to the master have the same address in the slave address field as the request packet. These addresses are programmable and range from 0 to 255.

Slave address 0 is a broadcast command, allowing the master to send the same packet to all devices at once. All slaves follow the instructions of this packet, but do not respond. Transfer requests are only available for functions up to 6 and 10, which represent presetting a single

register and presetting multiple registers, respectively. See Tables 1.3 and 1.4.

10.4 function number

The function number of a packet tells the addressed slave what action to perform. Nexus supports the following Modus function numbers.

Table 1.1 Function number

Function number		description
Hexadecimal	Decimalism	
03Н	3	Read holding register
06H	6	Preset a single register
10H	16	Preset multiple registers

10.4.1 Function number 03: read holding register

This function allows the master to read one or more parameter values (data registers) from a Nexus slave. This data register is a 16-bit value transferred in "Big Endian" format. The high byte is read first, and the low byte is read last.

BIG-ENDIAN means that the low-order bytes are discharged at the low end of the memory, and the high-order bytes are discharged at the high end of the memory

The master sends a packet to define a starting register and the number of registers to be read for the slave. The slave responds with a packet containing the requested parameter value within the range specified in the original request.

In the following example, the master device requests a slave at 01 to send the values in two registers, the initial register is 00001, and the slave replies with the values 3031H and 3037H from registers 00001 and 00002.

Host sending format:

Slave address Function number Data start address Number of read data CRC

Slave sending format:

Slave address Function number of bytes Value of each data CRC

Table 1.2 Example of function number 03

host package definition	Hexadecimal	Slave package definition	Hexadecimal address
	address		
slave address	01H	slave address	01Н
function number	03Н	function number	03Н
Data start address high byte	00H	Number of bytes	04H
Data start address low byte	01H	1st Data high byte	30Н
register number high byte	00H	1st Data low byte	31H
register number low byte	02H	2nd Data high byte	30H
CRC low byte	95H	2nd Data low byte	37H
CRC high byte	СВН	CRC low byte	F1H
		CRC high byte	2AH

10.4.2 Function No. 06: Adjust a single register

This function allows the master to modify a single register on the Nexus slave. The data register is a 16-bit value, the high byte is transmitted first, and the low byte is transmitted last. In the following example, the master device saves the value 0001H of register 57346 (E002) in the Nexus slave at address 01H.

Host sending format:

Slave address Function number Data start address Data value CRC

Slave sending format:

Slave address Function number Data start address Data value CRC

Table 1.3 Function number 6 sample questions

host package definition	Hexadecimal	Slave package definition	Hexadecimal
	address		address
slave address	01H	slave address	01H
function number	06H	function number	06H
Data start address high byte	ЕОН	Data start address high byte	ЕОН
Data start address low byte	01H	Data start address low byte	01H

data high byte	00H	data high byte	ООН
data low byte	01H	data low byte	01H
CRC low byte	2EH	CRC low byte	2EH
CRC high byte	OAH	CRC high byte	OAH

10.4.3 Function number 10: Adjust register

This function allows the host to modify a set of consecutive registers on the Nexus slave. The data register is a 16-bit value, the high byte is transmitted first, and the low byte is transmitted last.

In the following example, the master device saves the value 0001H of the register 57345, the value 0001H of 57346, and the value 0001H of 57347 of the Nexus slave with address 01H. Host sending format: Slave address Function number Data start address Number of modified data The first data... CRC

Slave sending format:

Slave address Function number Data start address Modify data number CRC

10.4.4 Data start address

Hex range: 0001H-FFFFH

decimal range: 0001-65535

For example, for some Scada software, in order to read the value in the holding register, the address format should be 4 (XXXXX), where XXXXX is the decimal address.

Table 1.4 Function number 10 sample questions

host package definition	Hexadecimal	Slave package definition	Hexadecimal
	address		address
slave address	01H	slave address	01H
function number	10H	function number	10H
Data start address high byte	ЕОН	Data start address high byte	ЕОН
Data start address low byte	01H	Data start address low byte	01H

Set point number high byte	ООН	Set point number high byte	ООН
Set point number low byte	03Н	Set point number low byte	03Н
Bytes	06H	CRC low byte	E6H
1st Data high byte	ООН	CRC high byte	08H
1st Data low byte	01H		
2nd Data high byte	ООН		
2nd Data low byte	01H		
3rd Data high byte	ООН		
3rd Data low byte	01H		
CRC low byte	4DH		
CRC high byte	46H		

10.5 dead time

If the Nexus slave does not receive the data from the master within the sending time of 3.5 bytes (about 7ms at the baud rate of 4800; about 300us at the baud rate of 115200), it considers that the data reception is over. If the delay between two bytes in the transmission process of the master is greater than this time, the slave considers it as dead time. So the conclusion drawn from the dead time is that all unaddressed slaves should pay attention to new packets from the master.

10.6 Exception procedure response

When executing the master command, if the slave encounters an illegal command or other problems, it will send an exception program response packet to the master. The exception program response packet contains an error code to indicate the type of error.

The following table is the error codes and corresponding error types.

Table	1-5	Error	codes	and	types
-------	-----	-------	-------	-----	-------

error	error type		explain
code			
01	illegal	function	The slave does not support the function number in the request

	number	packet
02	illegal address	The slave does not recognize the address of the data area in the
		transmitted request packet
03	illegal data	The data mentioned in the transfer request packet is not
		supported by the registers in the Nexus slave
06	Busy, refuse package	The slave is busy executing long operations and cannot receive
		request packets

In the following example, the master device requests the value in the send register 00256 of the slave device with address 01H, and the slave device sends an error response message, implying that it is busy.

Table	1.6	Examples	of	exception	procedure	responses
				*	*	

host includes	Hexadecimal	Slave contains meaning	Hexadecimal
	address		address
address	01H	address	01H
function number	03Н	function number	03H
Data start address high byte	01H	Error code	06H
Data start address low byte	00H	CRC low byte	C1H
Register Number High Byte	00H	CRC high byte	32Н
Register Number Low Byte	01H		
CRC low byte	85H		
CRC high byte	F6H		

Chapter 11 Instructions for using special functions

11.1 Use method of gantry function

11.1.1 Functional description

The large-span machinery now basically adopts the connection mode of the gantry beam, and is driven by two motors. In order to improve the synchronization of the two axes during operation, it is necessary to use In synchronous mode, the early synchronization is realized by the upper computer, and the servo is only used as the actuator. Now the gantry synchronous control is completely completed by the servo driver. The upper computer only does simple open-loop position control and logic control

11.1.2 Gantry function realization connection diagram

11.1.3 Servo basic settings and instructions

parameter	name	Explanation
code		
P01-00	Rotation direction	Setting range: 0-1 (for the current axis to change the direction of rotation independently) 0: Counterclockwise is the positive direction 1: Clockwise is the positive direction
P03-01.1	Position command receiver	0: This axis pulse port input

		port selection	1: Another axis pulse port input		
	0		It is used to adjust the counting direction of the pulse		
P03-03		command pulse inversion	command (set the A axis, and it is used to reverse the direction		
			of the AB axis at the same time)		
			0: normal.		
			1: reverse direction		
		Gantry function enabled	0: Disable the gantry function.		
	0		1: The parameter setting is enabled, and the gantry function		
	U		can be started only by inputting the IO gantry enable at the		
P03-50			same time		
		Enable OFF, clear gantry deviation	0: The gantry deviation is not cleared when the enable is		
	1		turned off		
			1: Clear the gantry deviation when the enable is turned off		
		Threshold of gantry	Setting range: 0-1073741823 Unit: command unit		
P03-53		function position deviation	Set the number of pulses for the allowable deviation. If it		
100 00		fault	exceeds the set value, it will alarm E.510. When it is set to 0, it		
			will not be detected		
		Gantry function	Setting range: 0-500		
		synchronous position	Increasing the parameter value can improve the position		
P03-55		proportional gain	synchronization of the two axes and help reduce the		
			synchronization error, but if the setting is too large, vibration		
			and noise will easily occur.		
P06-11	01	DI1 terminal - function	AB axis set 1, servo ON		
		selection			
P06-13	01	DI3 terminal - function	AB axis is set to 13, and the gantry synchronous function is		
		selection	enabled		
P06-14	01	DI4 terminal - function	AB axis is set to 14, and the gantry synchronization command		
		selection	is cleared		
P06-15	01	DI5 terminal - function	A axis is set to 3/4, forward/reverse overtravel; B axis is set to		
		selection	0		

P06-16	01	DI6 terminal - function	A axis is set to 0; B axis is set to 3/4, forward/reverse	
		selection	overtravel	

Note: The parameters are set according to the actual situation of the A and B axes

11.1.4 Synchronization setting open method and steps

The pulse command is input from the A-axis interface. The first bit of B-axis P3-01 is set to
 and it is configured as the B-axis shares the A-axis pulse signal.

2. Confirm that A-axis complies with orientation requirements. If the single axis does not match, it can be reversed by setting POI-OO of the current axis; if the two axes are not matched, it can be reversed by modifying the A axis PO3-O3.0

3. Set P3-50.0 to enable the gantry function; set parameter 3-50.1 to select whether to clear the gantry deviation when the function is turned off. Gantry deviation can also be cleared by setting the gantry deviation clear input DI port. Set the "gantry synchronization enable" function input DI port. Only when this port is valid, the gantry function is valid. The gantry function is turned on, and the port input is valid at the same time. The gantry function is activated, and the deviation count value starts counting

4. If it is necessary to adjust the machine, one axis needs to be moved, and the other axis should not be moved. It is necessary to close the "gantry synchronization enable", and use the pulse prohibition function to forcibly close the pulse input of the axis.

5. Monitoring: The following options are all encoder units, according to 8388608 per circle

d03 The position difference between the two axes, regardless of whether it is enabled or not, starts counting from power-on.

d04 Accumulated value of position difference between two axes. The gantry function is turned on and the gantry enable port input is valid to count.

d05 Position difference. The position difference that is finally applied to the position loop

11.2 Absolute encoder use

11.2.1 Functional description

By using a servo motor with an absolute encoder, an absolute value detection system can be constructed from a host device. With the absolute value detection system, it is no longer necessary to perform a return-to-origin operation every time the power is turned on. This function is based on MODBUS communication to read the number of turns and position data of the absolute encoder, and the upper device performs processing and control to realize the related functions of the absolute encoder.

11.2.2 Basic setting and description of servo based on MODBUS communication

When the system using the absolute encoder is put into use, it is necessary to initialize the number of rotation data (F07.En1 absolute encoder multi-turn value is cleared). Therefore, when initialization is required, such as when the power is turned on for the first time, an alarm related to the absolute encoder will occur. By setting (initializing) the absolute encoder, the alarm related to the absolute encoder will be cleared after the initialization of the number of revolutions data is executed.

Para code	name	Description		
P00-23	Slave station ID	Setting range: 0-255, default 1		
100-25		Set according to equipment requirements		
	Modbus Communication baud rate	Setting range: 0-7, default 2		
		0: 2400		
		1: 4800		
		2: 9600		
P00-24.0		3: 19200		
		4: 38400		
		5: 57600		
		6: 115200		
		7: 25600		
	485 communication parity check mode	Setting range: 0-3, default 0		
		0: no parity, 2 stop bits		
P00-24.1		1: even parity, 1 stop bit		
		2: Odd parity, 1 stop bit		
		3: No parity, 1 stop bit		

11.2.3 Absolute data address based on MODBUS communication

The servo provides 2 kinds of length encoder data options, you can choose one according to your needs, and the corresponding addresses are as follows: Single-turn 23-bit address table

content	Address:	Remark
	Decimalism	
Absolute encoder position	2126-2127	Single-turn value range: 0-8388608
within one turn		
Absolute encoder revolutions	2128	Multi-turn value range: 0-65535

Single-turn 16-bit address table

content	Address:	Remark
	Decimalism	
Absolute encoder revolutions	2160	Multi-turn value range: 0-65535
Absolute encoder position	2161	Single-turn value range:0-65535
within one turn		

11.2.4 Absolute encoder related alarm processing

alarm	Fault alarm reason	Fault alarm check	Disposal measures
code			
E.643	When the bus encoder is set	Check the voltage of the	Replace the battery, and clear the
	to multi-turn absolute value,	external battery of the	alarm through F06.EN0 (see Chapter
	the voltage of the external	encoder and confirm that it	8.4 for details)
	battery is low	is higher than 3.0V	
E.644	Reading multi-turn data is	Check the multi-turn value	If the multi-turn value is greater than
E.645	abnormal, or multi-turn data	of d21.ASH (see Chapter	32767, clear the multi-turn data
	is greater than 32767	8.3 for details)	through F07.EN1 (see Chapter 8.4 for

			details)
A.930	Absolute encoder battery	Check the encoder	Replace the battery, and clear the
	failure	external battery voltage	alarm through F06.EN0 (see Chapter
			8.4 for details)

11.2.5 Absolute Encoder Battery Replacement

If any of the following conditions occurs to the driver, please replace the battery to avoid loss of absolute position data.

1. When the driver displays A.930, it means low battery voltage warning. The battery must be replaced in time to avoid loss of motor absolute position data. After replacing the battery, use the auxiliary function AF-EN0 to clear the alarm

2. When the driver displays E.643, it means that the battery voltage is low and the alarm occurs. When this alarm occurs, the data of the number of motor turns cannot be recorded normally, and the battery must be replaced immediately. After replacing the battery, use the auxiliary function AF-EN0 to clear the alarm, and at the same time verify the origin of the device. At the same time, use the auxiliary function to clear the multi-turn data of the motor Note: When replacing the battery, it is recommended to do it when the drive is powered on to avoid loss of absolute position data